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The bark tissues were collected from 4-year-old sweet cherry trees cvs. 0900 Ziraat and Lambert grafted on Gisela 5 and Mazzard
rootstocks in cold-acclimated (CA) and nonacclimated (NA) stages. Bark tissues subjected to 4°C and —5°C injured to a limited
extent in both stages. However, more than 50% injury occurred by temperatures equal to or colder than —15°C only in NA
period. Total soluble sugar (TSS), reducing sugars, and sucrose contents were higher in CA than those in NA stages in all samples.
The activities of acid invertase (EC 3.2.1.26) and sucrose synthase (SS) (EC 2.4.2.13) enzymes were higher in NA stage than
those in CA stage. Considering the rootstocks, reducing sugars were higher in both cultivars grafted on Gisela 5 whereas sucrose
contents were higher in both cultivars grafted on Mazzard. However, the enzyme activities of both cultivars were higher on Mazzard
rootstock than on Gisela 5. In conclusion, cold hardiness of sweet cherry graft combinations was suggested by increasing their TSS,
reducing sugars, and sucrose contents significantly in the CA stage. Moreover, acid invertase and SS are down regulated during

cold acclimation. Indeed the results suggested that Mazzard is more cold-hardy rootstock than Gisela 5.

1. Introduction

Cold and frost are important environmental factors that limit
geographic distribution of plants and crop yields worldwide
[1, 2]. Many plants from temperate and cold climates,
including many important crop species, increase in freezing
tolerance when exposed to low temperatures. This process
on increasing tolerance is known as cold acclimation or cold
hardening [3, 4].

Studying cold hardiness of woody plants is complicated,
because freezing injury occurring in the field usually only
becomes visible in spring when growth commences. A range
of different methods can be used to evaluate injury after
artificial freezing in controlled conditions [5]. The most
frequently used methods for freezing injury assessment are
visual rating of injury and electrical conductivity (EC) of
diffused electrolytes [6].

Plant cells undergo dehydration during freezing stress
due to the presence of ice in extracellular spaces [3]. Mem-
brane damage is mainly due to the dehydration that occurs
during the freeze-thaw cycle. Freezing-induced destabiliza-
tion of the plasma membrane involves different types of
lesions [7, 8].

It has been reported that cold acclimation is accompanied
by biochemical changes including the expression of cold-
stress proteins, such as dehydrins [9], the accumulation of
sugars, particularly sucrose [10], sugar alcohols (mannitol
and inositol) [11], the accumulation of other cryoprotec-
tants, such as glycinebetaine [12] and proline [13], changes
in lipid composition [8, 14], in sugar metabolizing enzymes
[15-19], and enhancements of antioxidative mechanisms
[9].

The accumulation of sucrose, other simple sugars, and
osmolytes that typically occurs with cold acclimation also



seems to contribute to the stabilization of membranes [9]
and may play a key role in protecting the proteins from
freezing and dehydration [7]. Physiologically, compatible
solutes should have no adverse metabolic effects even at very
high concentrations. They are thought to stabilize sensitive
cellular components under stress conditions and also act as
bulk osmoprotectants [2].

The enzymes of carbohydrate metabolism are essential
for growth, development, and carbohydrate partitioning in
sink organs. Invertase, sucrose phosphate synthase (SPS),
and SS are directly involved in sucrose synthesis and/or
degradation [19]. The invertases (B-D-fructofuranosidase,
soluble acid, neutral and cell wall-bound acid) catalyze the
irreversible hydrolysis of sucrose to glucose and fructose [20].
Invertases normally reside within the cell wall or vacuole and
provide higher osmoticum to cold-acclimated cells [21]. SS
(UDP-D-Glc: D-Fru 2-a-glucosyltransferase, EC 2.4.2.13) is
a cytoplasmic enzyme that catalyzes the reversible cleavage
of sucrose with uridine 5’-diphosphate (UDP) to form
UDP-glucose and fructose. Although capable of synthesizing
sucrose, SS functions primarily in the direction of sucrose
degradation [22]. The alterations of these enzymes have
been investigated in wheat [15, 18], in spinach [16], and in
cabbage [19] exposed to low temperature.

Turkey ranks first in the world in sweet cherry produc-
tion with ~400.000t [23]. Cold hardiness of sweet cherry
cultivars and rootstocks is important in sweet cherry cul-
tivation. Mahaleb rootstocks are usually considered hardier
than Mazzard [24]. On the other hand sweet cherry cultivars
grafted on the rootstock Colt are less hardy than on either
Mazzard or Mazzard X Mahaleb. Moreover sweet cherry
cultivars grafted on Mazzard X Mahaleb rootstock were
hardier than those grafted on Mazzard or Mahaleb rootstocks
[25].

Emphasis is on sweet cherry, because this is currently
one of the most important fruit-tree crop, and frost damage
risk, is poorly understood. Therefore, it is important to
elucidate the mechanism and environmental factors that
affect freezing tolerance. This will help to prevent frost injury
and achieve stable crop production. There is, however, no
information available on sugar metabolism and the enzymes
involved in sucrose metabolism in sweet cherry during cold
acclimation. The objective of this study was to examine
seasonal changes in sugar and sucrose-metabolizing enzymes
and their relationship between cold hardiness in sweet cherry
graft combinations.

2. Materials and Methods

2.1. Plant Material. One-year-old shoots of sweet cherry tree
cv. 0900 Ziraat and Lambert grafted on Gisela 5 and Mazzard
rootstocks were collected from 4-year-old trees in Bayramic,
Turkey in CA (in January) and NA (in July) stages. In
January, the average temperature was 4.6°C (range —8.95°C—
16.73°C). In July, the average temperature was 25.8°C (range
11.28°C-37.57°C). Ten shoots were collected randomly from
each 3 or 4 trees of each graft combinations and packed on
ice in 3 replicates and brought to the laboratory. The shoots
were separated into two groups for the analysis. One part
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of the shoots was processed for controlled freezing test to
measure electrolyte leakage. Other part of the shoots was
used in sugars and enzyme analysis.

2.2. Low Temperature Treatments. Samples were exposed
to low temperatures according to the method of Arora et
al. [26]. Middle part of the collected shoot pieces, 20—
25cm long, were wrapped in aluminum foil along with
moistened paper and placed in manually controlled low-
temperature freezer. Plant tissue temperature was monitored
with a copper-constant thermocouple (Testo 925, Omni
Inst., Scotland, UK) inserted in the foil pouch. Tempera-
ture was decreased stepwise, as approximately 1.5°C/h to
—5°C and 5°C/h thereafter. Samples were exposed to low
temperature at 4, —5, —15, and —25°C for 12 h. Samples
were then removed from the freezer at each temperature and
placed at 4°C overnight for slow thawing. In the next step,
bark samples were scraped off using a razor blade. The bark
samples were used to determine electrolyte leakage.

2.3. Determination of Freezing Injury. Freezing injury of bark
tissues at each temperature was determined by measuring
electrolyte leakage as described previously by Eris et al.
[27]. Briefly, bark tissues with 1 X 1cm dimensions were
cut from the shoots. They were lightly rinsed in distilled
water, gently blotted with paper towel, and placed in test
tubes (one bark piece per test tube). Ten mL of distilled
water was added to test tubes which were then vacuum
infiltrated to allow uniform diffusion of electrolytes. Tubes
were shaken on a gyratory shaker (250rpm) for 4h at
room temperature. Electrical conductivity of each sample
was measured using WIW TetraCon 325 conductivity meter
(InoLab Cond Level 1, Weilheim, Germany). Electrical
conductivity of each sample was measured once more after
the tubes were autoclaved (0.12 MPa, 120°C, 20 min) and
cooled. Percentage injury at each temperature was calculated
from ion leakage data using the equation [26]: % injury =
[(%L¢) — %L))/(100 — %L«))] x 100, where %L and
%L are percentage ion leakage data for the treatments
and control samples, respectively. All measurements were
replicated three times.

2.4. Soluble Sugars. Sugars were extracted by suspending
100 mg of barks in 5mL of 80% (v/v) ethanol in an 85°C
water bath for 1h and then collecting the ethanolic liquid.
This procedure was repeated four times for 1h, 30 min,
15 min, and 15 min. The ethanolic solutions were combined
and evaporated to dryness at 55°C with the aid of continuous
ventilation. The dried sugars were dissolved in 1mL of
distilled water and kept frozen at —20°C until determination.

TSS and sucrose concentrations were determined by the
anthrone reagent method, as modified for the determination
of nonreducing sugars [28] by a Beckman UV-DU 520
spectrophotometer (Beckman Coulter, Fullerton, CA, USA)
at 620nm using glucose and sucrose as the standards,
respectively. Reducing sugar concentrations were determined
colorimetrically with dinitrosalicylic acid [29] using glucose
as the standard at 550 nm.
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2.5. Sucrose-Metabolizing Enzymes. Soluble (cytosolic) acid
invertase activity in bark tissue was determined according to
Aloni et al. [30]. In short, tissue samples of approximately
500 mg were ground in 5 mL ice-cold grinding medium con-
taining 25 mM HEPES buffer (N2-2-ethanesulphonic acid)
pH 7.2, 5mM MgCl,, 2mM DDT (DL-Dithiothreitol) and
3mM DIECA (diethyldithiocarbamic acid) as antioxidant.
This mixture was centrifuged at 20 000 g for 20 min at 4°C.
Aliquots of 100 uL of the supernatant were incubated in
10mL 0.1N phosphate citrate buffer pH 5.0 and 20 mM
sucrose. The incubation was carried out for 30 min at 37°C
and was terminated by addition of 1 mL dinitrosalicylic
acid reagent. After boiling for 5min, the resulting sugars
were determined colorimetrically. SS activity was deter-
mined according to Aloni et al. [31]. Following extraction
as described for acid invertase the mixture was dialysed
overnight in order to remove the internal sugars. The
enzymatic activity was determined as sucrose breakdown
on aliquots of 200uL incubated in incubation medium
containing 0.1 M phosphate-citrate buffer pH 7.0, 200 mM
sucrose, and 5 mM UDP. After incubation at 37°C for 30 min,
the resulting fructose was determined by the dinitrosalicylic
acid reaction. The data were expressed on fresh mass basis.
Total soluble protein contents of the crude enzyme extracts
were determined according to Bradford [32].

2.6. Statistical Analysis. The experiment was arranged in
a randomized block design with three replications. Data
were tested by SPSS 13.0 for Windows program and mean
separation was accomplished by Duncan test at P < 0.05.

3. Results

3.1. Freezing Injury. Changes in freezing injury in bark tis-
sues of sweet cherry tree cv. 0900 Ziraat and Lambert grafted
on Gisela 5 and Mazzard rootstocks in cold-acclimated (CA,
in January) and nonacclimated (NA, in July) stages with
respect to exposure to freezing treatments are shown in
Figure 1. In general, freezing injury (expressed by reference
to controls) was the highest in NA stage than CA stage after
freezing tests. The lowest and the highest average freezing
injury were observed in barks exposed to 4°C and —25°C,
respectively. Freezing injury was below 50% in barks exposed
to 4°C and —5°C in both period and was higher in NA stage
exposed to —15°C and 25°C.

Difference between graft combinations was more promi-
nent in NA stage than in CA stage. Accordingly, while there
was no significant correlation between graft combinations
and low temperature treatments at 4, —5, and —15°C, injury
was significantly greater in sweet cherry cultivars grafted
on Gisela 5 rootstock compared with Mazzard at —25°C
treatment. The highest injury by this treatment was observed
in cv. Lambert grafted on Gisela 5. However, Lambert
constituently showed higher injury on Mazzard than 0900.

3.2. Soluble Sugars. TSS contents of all graft combinations
were significantly higher in CA stage than NA stage
(Figure 2(a)). The highest TSS content was measured

TABLE 1: Results of variance analysis (ANOVA) of stage (S), grafting
combination (GC), and their interactions with total sugar content
(TSS), reducing sugars content, sucrose content, acid invertase
activity, and sucrose synthase activity (SS) in bark tissues of sweet
cherry cultivars grafted on different rootstock. Numbers represent
F values at 0.05 level.

. Ind dent variabl
Dependent variable ndependent variable

S GC SxGC
TSS content 11743.831* 56.068* 67.153*
CR(f:t‘leg sugars 229.261* 9.661* 9.084*
Sucrose content 2410353* 13.811* 15.107*
Acid invertase activity 138.761* 24.881* 13.735*
SS activity 358.408* 82.003* 53.250*

* Significant at P < 0.05.

in Gisela 5/0900 (~57.5mg/g FW) and Mazzard/0900
(~56.5mg/g FW) combinations and the lowest in Gisela
5/Lambert (~44.5 mg/g FW). However, no significant differ-
ence was detected among TSS contents of graft combinations
in NA stages. Two-way ANOVA revealed a significant effect
of sampling stage, grafting combination, and the interaction
of sampling stage and grafting combination on TSS content
(Table 1).

Reducing sugar content was significantly greater in CA
stage than in NA stage in all graft combinations (Figure 2(b)).
Reducing sugar content was higher in either sweet cherry
cultivars grafted on Gisela 5 rootstock compared with
Mazzard rootstock in CA stages. The highest and the lowest
reducing sugar contents in CA stage were detected in Gisela
5/Lambert (~14.0 mg/g FW) and Mazzard/0900 (~9.0 mg/g
FW) combinations, respectively. Similar to TSS content in
NA stages, no significant difference was detected in reducing
sugar content of the graft combinations in NA stages.
Two-way ANOVA revealed a significant effect of sampling
stage, grafting combination, and the interaction of sampling
stage and grafting combination on reducing sugar content
(Table 1).

All graft combinations had significantly higher sucrose
contents when sampled at CA than at NA stage (Figure 2(c)).
When data from CA period were considered, the highest
sucrose content was observed in Mazzard/Lambert combi-
nation (~9.7mg/g FW) and the lowest Gisela 5/Lambert
(~7.6mg/g FW). As with TSS and reducing sugars, there
were no significant differences among graft combinations in
sucrose content in NA period. Two-way ANOVA revealed
a significant effect of sampling stage, grafting combination,
and the interaction of sampling stage and grafting combina-
tion on sucrose content (Table 1).

3.3. Sucrose-Metabolizing Enzymes. Acid invertase activity
of all graft combinations indicated significant differences
between CA and NA stages (Figure 3(a)). Acid invertase
enzyme activity was significantly greater in NA stage than
in CA stage in all graft combinations. The highest and
the lowest enzyme activity in CA stage were detected in
Mazzard/0900 and in either sweet cherry cultivars grafted
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FIGURE 1: The changes of injury under low-temperature treatments in cold-acclimated (CA, in January) and nonacclimated (NA, in July)
bark tissues of sweet cherry cultivars grafted on different rootstock. Error bars represent + SE of three replications.
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FiGURre 2: TSS (a), reducing sugars (b), and sucrose (c) contents in cold-acclimated (CA, in January) and nonacclimated (NA, in July) bark
tissues of sweet cherry cultivars grafted on different rootstock. FW: fresh weight. Error bars represent + SE of three replications.
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F1GURE 3: Acid invertase (a) and SS (b) activities in cold-acclimated
(CA, in January) and nonacclimated (NA, in July) bark tissues of
sweet cherry cultivars grafted on different rootstock. Error bars
represent = SE of three replications.

on Gisela 5 rootstocks, respectively. The highest acid inver-
tase activity in NA stage was detected in Mazzard/0900
(0.56 mg/gprot./h) while the lowest activity was detected
in Mazzard/Lambert combination (0.25 mg/g prot./h). Two-
way ANOVA revealed a significant effect of sampling stage,
grafting combination, and the interaction of sampling stage
and grafting combination on acid invertase activity (Table 1).

SS activity of all graft combinations was significantly
higher in NA stage compared with those in CA stage
(Figure 3(b)). In addition, SS activity varied among graft
combinations in both CA and NA stages. When data
from the CA period were considered, the highest SS
activity was measured in Mazzard/Lambert combination
(0.13mg/gprot./min) and the lowest in Gisela 5/0900
(0.04 mg/g prot./min). The order of the graft combinations
with the highest and the lowest SS activity in NA stage was
similar to that in CA stage. Two-way ANOVA revealed a sig-
nificant effect of sampling stage, grafting combination, and
the interaction of sampling stage and grafting combination
on SS activity (Table 1).

4. Discussion

4.1. Freezing Injury. Cell membrane stability was widely used
to express stress tolerance; and higher membrane stability

could be correlated with abiotic stress tolerance [33]. In
order to determine the response of sweet cherry cultivars
grafted different rootstocks to low temperatures (4°C, —5°C,
—15°C, —25°C), we measured membrane thermostability by
electrolyte leakage method. Regarding the results of injury
from bark tissues, it was the highest in NA stage than CA
stage in all grafting combinations (Figure 1). Beside that, in
the NA stage, higher than 50% injury was determined in bark
tissues exposed to —15°C and —25°C treatments in all graft
combinations. The injury was significantly greater in sweet
cherry cultivars grafted on Gisela 5 rootstock compared with
that on Mazzard at —25°C. The greatest injury by —25°C
treatment was observed in cv. Lambert grafted on Gisela 5
with ~77%. These results are in a good agreement with the
result of other studies which shows that low temperature
had usually been considered as the major cause of increased
cell membrane permeability, relative conductivity, and injury
index of plant tissue [26, 27, 34, 35]. To our knowledge,
this is the first detailed study of membrane stability in
sweet cherry cultivars/rootstock carried out under laboratory
freezing tests.

4.2. Soluble Sugars. It is well known that sugar metabolism
is affected by temperature stress, and sugars accumulate in
response to low-temperature stress [36]. Our results indicate
that during NA period, bark tissues had significantly lower
TSS contents than during the CA period (Figure 2(a)), which
paralleled their freezing tolerance. Increases in TSS ame-
liorate the impact of dehydration associated with freezing
[9]. Consequently, seasonal changes in TSS content were
related to changes in cold hardiness and air temperatures in
sweet cherry. Accumulation of TSS during cold acclimation
occurs in several species, such as peach [37], raspberry [36],
olive [27, 38], cabbage [19, 39], arabidopsis [40], and wheat
[41].

In this study, reducing sugar and sucrose content were
significantly greater in CA stage than in NA stage in
all graft combinations (Figures 2(b) and 2(c)). However,
reducing sugar content was higher in either sweet cherry
cultivars grafted on Gisela 5 rootstock compared with
Mazzard rootstock in CA stages (Figure 2(b)). On the
other hand, sucrose content was higher in either sweet
cherry cultivars grafted on Mazzard rootstock compared
with Gisela 5 rootstock in CA stages (Figure 2(c)). The most
commonly accumulated soluble sugar in response to low
temperature is sucrose [16]. However, sugar accumulation
at low temperature is not limited to only sucrose. The
types of sugar accumulated vary among plant species during
cold acclimation. It was determined that the contents of
sucrose, glucose, and fructose increased on exposure to low
temperature in spinach [16] and in cabbage [39]. Hamman
et al. [42] found that the high ratio of glucose plus fructose
to sucrose are positively correlated with hardiness in grape.
Palonen [36] also reported that high concentrations of
soluble carbohydrates, sucrose, and a high ratio of sucrose to
glucose plus fructose were characteristic of a hardy raspberry
cultivar. Similarly, it was reported that changes in TSS,
particularly glucose and sucrose contents were related to
variations in freezing tolerance of olive [27, 38].



However in the present study reducing sugar but not
sucrose was most abundant sugar in bark tissues of 1-
year-old shoots. Beside that, the proportional increase in
sucrose content in CA and NA stages was greater than that
of reducing sugars (Figures 2(b) and 2(c)). These results
are in good agreement with those of Gulen et al. [38],
who detected that reducing sugar, but not sucrose, was the
major soluble carbohydrate and the proportional increase in
sucrose content in CA and NA stages was greater than that of
reducing sugars in olive leaves.

4.3. Sucrose-Metabolizing Enzymes. Invertase, SPS, and SS
are directly involved in sucrose synthesis and/or degradation
[19]. However, changes in activities of these enzymes at low
temperature varied between the plant species. In the present
study, acid invertase and SS activity were significantly greater
in NA stage than in CA stage in all graft combinations
(Figures 3(a) and 3(b)). In reality, there have been different
reports about this subject in the literature. Castonguay and
Nadeau [17] reported that, when acid invertase and SS
activities in alfalfa decreased during fall acclimation, SPS and
galactinol synthase (GS) showed markedly higher activity at
low temperature. Similarly, Guy et al. [ 16] found that leaf SPS
activity was significantly increased by the low-temperature
treatment, whereas SS and invertases were not in spinach.
On the other hand, Calderon and Pontis [15] showed that
the activity of SS rose continuously, immediately after the
chilling shock in wheat. Beside that, both enzymes activities
increase by cold treatments in wheat [18]. Sasaki et al.
[19] suggest that SS and SPS, but not acid invertase, are
regulated by cold acclimation and deacclimation and play
important roles in sugar accumulation and acquisition of
freezing tolerance in the leaves of cabbage seedlings.

In conclusion, the grafting combinations in sweet cherry
investigated here increased their cold hardiness by increasing
their TSS, reducing sugars, and sucrose contents significantly
in the CA stage. On the other hand, acid invertase and
SS are downregulated during cold acclimation. To better
understand the regulation of cold-induced accumulation
of soluble sugars, it should be measured the activity of
other key regulatory enzymes involved in the metabolism of
carbohydrate.
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CA: Cold acclimated

EC: Electrical conductivity

GS: Galactinol synthase

NA: Nonacclimated

SPS: Sucrose phosphate synthase
SS: Sucrose synthase

TSS: Total soluble sugar.
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