

Source Device Attribution For Digital

Videos

Emmanuel KIEGAING KOUOKAM

T.C.
ULUDAĞ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

SOURCE DEVICE ATTRIBUTION FOR DIGITAL VIDEOS

Emmanuel KIEGAING KOUOKAM

Assoc. Prof. Dr. Ahmet Emir DİRİK
(Supervisor)

MASTER OF SCIENCE THESIS
DEPARTMENT OF ELECTRONIC ENGINEERING

BURSA-2018

ÖZET

Yüksek Lisans Tezi

SAYISAL VİDEOLARDA KAYNAK CİHAZ TANIMA

Emmanuel Kiegaing Kouokam

Uludağ Üniversitesi
Fen Bilimleri Enstitüsü

Elektronik Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Ahmet Emir DİRİK

Kaynak cihaz tespiti, dijital resim veya videolardan çeşitli adli bilişim yöntemleri kullanılarak
cihaz tanımayı amaçlayan sayısal adli bilişim içerisindeki ana konulardan birisidir. Adli bil-
işimde genellikle fotoğraf veya videonun çekilmesi esnasında cihazın donanımsal olarak res-
imler üzerinde bıraktığı izler kullanılarak tespit işlemleri yapılmaktadır. Bu kalıntı izleri
içerisinde sensörlerden kaynaklı kalan PRNU izleri her cihazda kendine özgü olmasından
ötürü kaynak cihaz tanımada kullanılan en önemli izlerdir. Bu çalışmada, video sıkıştır-
manın, çerçeveler üzerindeki PRNU gürültüsü üzerindeki etkisi irdelenmiş ve oldukça yoğun
sıkıştırılmış H.264/AVC videolarında kaynak cihaz tanıma için yeni bir yöntem önerilmiştir.
Önerilen yöntem stabilize edilmemiş videolar için oldukça geniş bir veri setinde test edilmiş
ve yoğun sıkıştırılmış videolarda bile yüksek yüzdede başarı elde edilmiştir. Ayrıca stabi-
lize edilmiş videolarda kaynak cihaz tanıma yapılabilmesi için yeni bir metot önerilmiştir.
Bu metot yoğun sıkıştırılmış ve stabilize edilmiş küçük bir veri setinde test edilmiştir. Elde
edilen sonuçlar, önerilen yöntemin oldukça başarılı ve etkili olduğunu göstermektedir.

Anahtar Kelimeler: Sayısal adli bilişim, kaynak cihaz özelliği, PRNU, video sıkıştırma,
dijital video stabilizasyon.
2018, ix + 89 sayfa

i

ABSTRACT

Master of Science Thesis

SOURCE DEVICE ATTRIBUTION FOR DIGITAL VIDEOS

Emmanuel Kiegaing Kouokam

Uludağ University
Graduate School of Natural and Applied Sciences

Department of Electronic Engineering

Supervisor: Assoc. Prof. Dr. Ahmet Emir Dirik

Source device attribution is one of the main tasks of multimedia forensics which aims to iden-
tify the device from which a digital image or video originates using blind forensic techniques.
Forensics generally rely on unique artifacts created on acquired images or videos during the
acquisition process. Photo-Response Non-Uniformity (PRNU) is one of the most important
sensor artifacts used in source device attribution due to its unique, random, and robust nature.
In this research, we study the effect of video compression on the PRNU noise in video frames
and propose new techniques to perform an accurate source device attribution of highly com-
pressed H.264/AVC videos. The proposed scheme for non-stabilized videos was tested on a
large set of videos and achieved a high accuracy even on highly compressed videos. We also
propose a new scheme for source device attribution of digitally-stabilized video; this scheme
was tested on a small set of digitally-stabilized and highly-compressed videos; the results
obtained show the effectiveness of the proposed scheme.

Key Words: Video forensics, source device attribution, Photo-Response Non-Uniformity,
video compression, digital video stabilization.
2018, ix + 89 pages

ii

TABLE OF CONTENT

Page

ÖZET . i

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

ABBREVIATIONS AND SYMBOLS . vi

LIST OF FIGURES . vi

LIST OF TABLES . viii

1 INTRODUCTION . 1

2 THEORETICAL FOUNDATIONS . 7

2.1 PRNU of digital camera sensors and its use for image source attribution 7

2.1.1 The image acquisition process and its artifacts 7

2.1.2 Camera sensor output model . 11

2.1.3 Camera sensor fingerprint estimation . 12

2.1.4 PRNU-Based image source identification . 14

2.2 The H.264/AVC video compression standard basics 16

2.2.1 Block processing . 17

2.2.2 Prediction in H.264 . 19

2.2.3 Transform and Quantization in H.264 . 22

2.2.4 H.264/AVC profiles . 26

2.3 Effects of video compression on the PRNU noise in video frames 26

2.3.1 Open source softwares for H.264/AVC video encoding/decoding 29

2.4 Overview of digital video stabilization . 30

2.4.1 Motion estimation . 31

2.4.2 Motion smoothing . 33

2.4.3 Motion compensation . 33

iv

3 MATERIAL AND METHOD . 35

3.1 Source device attribution for non-stabilized videos 35

3.1.1 Frame-based approach . 35

3.1.2 Block-based approach . 36

3.2 Source device attribution for stabilized videos 39

3.2.1 Estimation of sensor crop and scale parameters that match an image-based to a

frame-based fingerprint . 40

3.2.2 Proposed scheme for stabilized video frames noise registration 43

3.2.3 Warped frames noise aggregation . 53

4 RESULTS . 56

4.1 The VISION dataset . 56

4.1.1 VISION dataset overview . 56

4.1.2 Properties of videos used in our experiments 57

4.2 Source device attribution for non-stabilized videos 58

4.2.1 Source device attribution for native videos . 59

4.2.2 Source device attribution for YouTube videos with fingerprints estimated from

the native videos . 61

4.2.3 Source device attribution for YouTube videos with reference fingerprints esti-

mated from YouTube videos . 62

4.3 Source device attribution for digitally stabilized videos 74

4.3.1 Source device identification for in-camera-stabilized videos 75

4.3.2 Source device identification for videos stabilized with FFmpeg 78

4.3.3 Source device identification for videos stabilized with YouTube stabilizer 80

5 DISCUSSION AND CONCLUSION . 83

REFERENCES . 85

CURRICULUM VITAE . 91

v

ABBREVIATIONS AND SYMBOLS

Symbol Meaning

I Intensity of an image
K PRNU matrix
K̂ Fingerprint matrix (estimate of K)
Mk Mask of frame k
Wbcur PRNU noise in a block which is to be encoded
Wbδ PRNU noise in the block’ prediction residual
Wk PRNU noise estimated from frame/image k
�Wbδ PRNU noise in a block after transform and quantization
�Wbcur PRNU noise in the decoded block
�Wbre f PRNU noise in the reference block

Abbreviation Meaning

ADC Analog to Digital Converter
AUC Area Under Curve
AVC Advanced Video Compression
BB Block-Based
CCD Charged Coupled Device
CFA Color Filter Array
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
DCT Discrete Cosine Transform
DCT-AC DCT-Alternative Component
DCT-DC DCT-Direct Component
FB Frame-Based
FFT Fast Fourier Transform
FP False Positive
GOP Group Of Pictures
GPU Graphics Processing Unit
MPI Message Passing Interface
NCC Normalized Cross-Correlation
PCE Peak-to-Correlation Energy
PRNU Photo-Response Non-Uniformity
ROC Receiver Operating Characteristic
TP True Positive
720p 1280×720 progressive video
1080p 1920×1080 progressive video

vi

vii

LIST OF FIGURES

Page

Figure 2.1 Image acquisition pipeline . 7

Figure 2.2 Components of the imaging sensor pattern noise 9

Figure 2.3 Influence of image content on the estimated noise residual (pictures are from the

VISION dataset) . 13

Figure 2.4 Reference and linear patterns for an exemplar of Samsung Galaxy S3 Mini

smartphone camera . 14

Figure 2.5 Principle of PRNU-based source device attribution for digital images 15

Figure 2.6 Block diagram of an H.264/AVC encoder/decoder (Marpe et al. 2006) 17

Figure 2.7 4:2:0 color sub-sampling scheme (Richardson and E. 2010) 18

Figure 2.8 Example of partition choices for a P frame (Richardson and E. 2010) 18

Figure 2.9 Principle of prediction residue computation in inter-frame prediction

(Richardsonand E. 2010) . 19

Figure 2.10 Principle of intra-frame and inter-frame predictions (Richardson and E. 2010) .

. 20

Figure 2.11 Intra-prediction modes for 16×16 and 4×4 sized blocks (Richardson and E.

2010) . 20

Figure 2.12 Macroblock partitioning in inter-frame prediction (Richardson and E. 2010) . . .

. 21

Figure 2.13 Zigzag addressing : DCT coefficients appear in increasing frequencies

(Richardson and E. 2010) . 23

Figure 2.14 Macroblock Luma direct and inverse transform and quantization with a 4 × 4

DCT transform core (Richardson and E. 2010) 24

Figure 2.15 Macroblock Chroma direct and inverse transform and quantization with a 4 × 4

DCT transform core (Richardson and E. 2010) 25

Figure 2.16 Macroblock Luma direct and inverse transform and quantization with a 8 × 8

DCT transform core (Richardson and E. 2010) 25

Figure 2.17 H.264/AVC profiles (Marpe et al. 2006) . 26

Figure 2.18 Operations applied on a block’s PRNU noise during the block’s
encoding/decoding. 27

Figure 2.19 Video compression effect on the PRNU noise (the contrast has been adjusted to

improve visibility) . 29

Figure 2.20 Video stabilization on a sample input sequence (Hlmg et al. 2014) 31

Figure 3.1 PRNU fingerprints estimated from an input video 36

Figure 3.2 H.264-video Macroblocks parsing process flow 37

Figure 3.3 Example of a highly compressed I frame and its associated frame mask 38

Figure 3.4 Proposed scheme for source device identification of stabilized videos 39

Figure 3.5 Sensor resolution downscaling process in video acquisition 40

Figure 3.6 Proposed scheme for row-scaling and column-cropping parameters estimation . .

. .41

Figure 3.7 Row-scaling and column-cropping based parameters estimation : peaks represent

searched parameters . 43

viii

Figure 3.8 Affine transform of a rectangle with its control points 44

Figure 3.9 Affine transform parameters estimation scheme 47

Figure 3.10 Computed maximum cross-correlation values at each step

. . . 48
Figure 3.11 Peak in the NCC between a reference fingerprint and a registered frame noise .

. 53

Figure 4.1 Architecture of the VISION dataset (Dasara et al. 2017) 57

Figure 4.2 PCE distributions of 720p native videos matched to native videos 62

Figure 4.3 PCE distributions of 1080p native videos matched to native videos 63

Figure 4.4 PCE distributions of 720p native videos matched to YouTube videos 65

Figure 4.5 PCE distributions of 1080p native videos matched to YouTube videos 66

Figure 4.6 ROC curves of 720p native videos matched to YouTube videos 67

Figure 4.7 ROC curves of 1080p native videos matched to YouTube videos 68

Figure 4.8 PCE distributions of 720p YouTube videos matched to YouTube videos 70

Figure 4.9 PCE distributions of 1080p YouTube videos matched to YouTube videos . . . 71

Figure 4.10 ROC curves of 720p YouTube videos matched to YouTube videos 72

Figure 4.11 ROC curves of 1080p native videos matched to YouTube videos 73

Figure 4.12 PCE values obtained when matching an image-based fingerprint to the PRNU

noise extracted from I frames of a flat-content stabilized video (iPhone6) 76

Figure 4.13 PCE values of non-registered and registered PRNU frames noise 76

Figure 4.14 NCC corresponding to wrongly and correctly estimated affine transform . . . 77

Figure 4.15 Cross-correlation before and after frame noise registration (iPhone6 test video)

. .78

Figure 4.16 PCE of non-registered and registered frames noise (video stabilized with

FFmpeg) .79

Figure 4.17 Cross-correlation before and after frame noise registration (FFmpeg-deshake

test video) . 79

Figure 4.18 PCE of non-registered and registered frames noise (video stabilized with

YouTubeStabilizer) . 81

Figure 4.19 Cross-correlation before and after frame noise registration (YouTube-stabilized

test video) . 81

ix

LIST OF TABLES

Page

Table 2.1 Information included in the JM log file according to the log level 30

Table 2.2 Elementary operations involved in 2D-motion modeling 32

Table 2.3 Properties of 2D transformations used for motion modeling 33

Table 3.1 Combination of frame types for fingerprint estimation in the frame-based

approach. 35

Table 4.1 The set of native videos used in our experiments 57

Table 4.2 Properties of native videos ([minimum average maximum]) 58

Table 4.3 Properties of YouTube videos ([minimum average maximum]) 59

Table 4.4 Number of correlation for matching and non-matching videos for each device . . .

. . . 60

Table 4.5 AUC values of 720p native videos matched to native videos 60

Table 4.6 AUC values of 1080p native videos matched to native videos 61

Table 4.7 AUC values of 720p native videos matched to YouTube videos 61

Table 4.8 AUC values of 1080p native videos matched to YouTube videos 64

Table 4.9 AUC for each device when matching 720p native videos to YouTube videos .64

Table 4.10 AUC values for each device when matching 1080p native videos to YouTube

videos 64

Table 4.11 AUC values of 720p YouTube videos matched to YouTube videos 69

Table 4.12 AUC values of 1080p YouTube videos matched to YouTube videos 69

Table 4.13 AUC values for each device when linking 720p YouTube videos 69

Table 4.14 AUC values for each device when linking 1080p YouTube videos 74

Table 4.15 Properties of computers in the cluster used for frames noise registration 75

Table 4.16 Processing time for the registration of the PRNU noise in one frame 75

Table 4.17 iPhone6 test video results . 77

Table 4.18 Properties of fingerprint and test videos used in the FFmpeg experiment . . . 78

Table 4.19 FFmpeg-deshake test video results . 79

Table 4.20 Properties of fingerprint and test videos used in the Youtube-Stabilizer

experiment . 80

Table 4.21 YouTube-stabilized test video results80

1. INTRODUCTION

The use of digital media (digital images and videos) has increased steadily in the last decade

to a point where it has become a major means for sharing information. The booming of the

smartphone and tablet markets has made it possible for everyone to have all the necessary

hardware and software to capture, reproduce, and share images and videos. Nowadays dig-

ital cameras can be found everywhere, in standard surveillance cameras, small sized hidden

(or spy) cameras, as well as video recorders for cars and helmets. According to the Inter-

net company Alexa (2018), YouTube and Facebook are currently the second and third most

visited websites on the Internet, respectively. Iuliani et al. (2017) also reported that images

and videos acquired with smartphones represent 85% of images and videos shared on the

Internet.

Digital media are not only used for education, entertainment or information communication;

they also constitute an effective means to perpetrate illegal acts such as movie piracy, terrorist

propaganda, child pornography. The BBC (2016) reports a recent case where punishable acts

were massively committed using digital cameras. The reported event took place in South

Korea, where the practice of hiding spy cameras in women’s toilets and later sharing the

acquired videos on the Internet was popular. In some countries, it is possible to use an image

or a video as evidence during a trial in a court of justice. All these facts raise the importance

and necessity of finding methods to accurately identify the device from which a given image

or video originates.

Identifying the origin of digital media can be the source of important information during an

investigation. For instance, it can mean that the owner of the camera has witnessed the scene

that was captured, that he has been at the place where the footage was taken. Device linking,

which consists of determining whether two images or videos originate from the same device

or not, can be used to trace a suspect (for instance a pedophile) sharing his offensive content

through different social media accounts/platforms.

1

There are two approaches for digital media source device attribution: an active approach,

called multimedia security; and a passive approach, called multimedia forensics. The active

approach is based on techniques such as watermarking or steganography, which are invisible

and fragile patterns added to acquired images or videos during the acquisition process and

which can later be used to check the integrity and source of the media. Contrary to multimedia

security, multimedia forensics does not use any active means and relies solely on artifacts in

the acquired media created by components or algorithms used in the acquisition device. It is

also important to mention that when acquiring an image or video, digital cameras also add

to the file’s headers data related to the acquired media (metadata), such as the acquisition

device brand, time, location, and type of compression. However, these data are not reliable

since they can easily be modified with simple software tools like Exiftool (Harvey 2018).

This research is in the scope of multimedia forensics and uses the camera sensor’s Photo-

Response Non-Uniformity (PRNU) (which adds a noise pattern to all the frames of videos

acquired with a given device) to perform video source device attribution. Two quantities are

necessary to perform PRNU-based source device attribution of digital images or videos: the

camera fingerprint and the query image or video noise. By camera fingerprint, we mean a

strong estimation of the PRNU noise pattern, which is generally obtained using a set of low

textured images or video frames. The query image or video noise refers to the PRNU noise

pattern estimated from a single image or a set of video frames from a random video. The

challenge in PRNU-based source device attribution is about finding methods which provide

a good estimate of the camera fingerprint and the image/video noise.

The idea of using CCD (Charge-Coupled Device) sensor imperfections to perform video

source identification first originated from K. Kurosawa in late 1999. Kurosawa et al. (1999)

showed that dark currents in a CCD chip form a fixed noise pattern which is added to the

videotape taken with the camcorder. Thus, this fixed noise pattern can be used as a “finger-

print" to identify the source of a given videotape. Six years later, Lukas et al. (2005) investi-

gated the different types of noise in imaging sensors, built strong mathematical foundations

for Photo-Response Non-Uniformity noise estimation from digital images and, showed how

2

it could effectively be used to perform digital image source attribution and copy-move forgery

detection.

Chen et al. (2007) investigated the identification of video-source camcorders and showed

that PRNU can efficiently be used to identify the source camcorder of a video (even a low-

resolution video) using individual frames to estimate the sensor’s fingerprint, given that

enough frames are available (a ten-minute video clip was enough to identify the source of

low-resolution videos). Hyun et al. (2012) improved the results in (Chen et al. 2007) by

applying a MACE (Minimum Average Correlation Energy) filter to the estimated reference

PRNU fingerprint before correlating it with a query video’s Sensor Pattern Noise (SPN).

Through this, an improvement of up to 10% of the correct attribution rate was achieved.

Houten and Geradts (2009) investigated the usage of the PRNU for source identification of

YouTube videos. A set of webcams and codecs were used to record and encode videos which

were later uploaded to and downloaded from YouTube. PRNU noise was then estimated from

the downloaded videos and classified using normalized cross-correlation. Even though this

work gave good results, its findings are now out of date since devices and codecs used by

YouTube back in 2009 have significantly evolved.

Villalba et al. (2016) proposed a video source identification scheme based on the usage of

PRNU and Support Vector Machine (SVM). A set of 5 smartphones from 5 different brands

were used to acquire videos used in training and testing steps. A total of 81 features which

are the SPN wavelet components’ moments were used to feed an SVM-based classifier. Only

native videos (videos taken from the acquisition devices without any post-processing) which

have been center-cropped to various resolutions were used. It was reported that the proposed

classification scheme has an accuracy of about 87.4 to 90 % depending on video resolution.

Because of the increasing use of digital video stabilization in handheld devices, it became

necessary to propose new schemes capable of performing source device attribution for digi-

tally stabilized videos. Performing video source attribution for stabilized video is a challeng-

3

ing task since video stabilization applies geometric transformations to video frames. Trans-

formations applied to video frames can be rigid, similarity, affine, or perspective transforms,

which all lead to the misalignment of the video frames with each other and with the sensor

array. Taspinar et al. (2016) proposed a registration scheme for the PRNU noise pattern esti-

mated from digitally stabilized video frames. They considered the first I frame in the video

as the reference frame and estimated, using a brute search force, rigid transformations (ro-

tation and translation) registering the PRNU noise from a maximum of 50 I frames to the

PRNU noise of the reference frame. The estimation of the rigid transforms was based on the

computation of the cross-correlation between the PRNU noise from the reference frame and

the rotated frame PRNU noise. Rotated frames giving a maximum cross-correlation value

greater than a given threshold were selected. The final PRNU video noise (or camera finger-

print) was estimated as the sum of PRNU noise from all the selected frames together with the

noise from the reference frame. They reported a TP rate of 0.83 (for an FP rate of 0.0) on a

set of 100 videos when the camera fingerprint was estimated from non-stabilized videos. The

TP dropped to 0.65 when videos used for camera fingerprint estimation and query noise were

both stabilized videos.

More recently , Iuliani et al. (2017) proposed a “hybrid" approach to video source attribution.

Considering the idea that was suggested in (Taspinar et al. 2016), which consist of using

images instead of video frames to estimate camera reference fingerprints. For a large set

of smartphone and tablet cameras, they established transfer functions between a fingerprint

estimated from still images and the one estimated from frames of a non-stabilized video

taken with the same camera. These transfer functions consisted of crop and scale parameters

that best matched the two fingerprints. Each transfer function was applied to the fingerprint

estimated from images and then correlated with the noise pattern estimated from frames of

a non-stabilized query video. For stabilized query videos, a set of frames from the video

are registered to the fingerprint estimated from still images. The frame registration is done

by estimating crop, scale, and rotation parameters giving a maximum cross-correlation value

above a given threshold. The PRNU noise pattern of the registered frames is then averaged to

4

form the video’s pattern noise. This approach solved the problem of estimating the reference

fingerprint of cameras featuring digital video stabilization (like iPhones and some Android

smartphones). They also proposed to link a Facebook and a YouTube account (using images

shared on Facebook to estimate the reference PRNU fingerprint and a query YouTube video’s

frames to estimate the video’s PRNU noise). This source identification scheme gave accurate

results on native unstabilized and stabilized videos, but its performances on YouTube videos

source attribution were very poor (a TP rate of 0.5 at its best). Nevertheless, this method is not

usable to perform video device linking. Moreover, in the case of Facebook-shared images,

estimating a camera fingerprint using images from unknown sources is not realistic, since it

is assumed that they are all coming from the same device, which may not always be the case.

It is, thus, necessary to find methods to estimate reliable PRNU fingerprint and video noise

using videos frames even when the videos under investigation have been highly compressed

and stabilized.

In this research, we investigate novel approache to source device attribution for highly com-

pressed and digitally stabilized H.264/AVC videos. We propose and test two methods to

estimate camera fingerprint and video noise from non-stabilized video frames: a frame-based

and, a block-based approach. For digitally stabilized (and highly compressed) videos, we

propose a novel scheme to estimate crop and scale parameters matching a PRNU fingerprint

estimated from still images to a PRNU noise estimated from frames of a digitally stabilized

video. Finally, we propose an effective scheme to register the PRNU noise estimated from

frames of a digitally stabilized video to a camera fingerprint.

The major contribution of this research in the field of source device attribution for highly-

compressed and non-stabilized videos is the block-based approach which gives, at the best

of our knowledge, results which are by far superior to previously published research work.

Concerning stabilized and highly-compressed videos, the proof of concept of the proposed

method shows the effectiveness of the method which, nevertheless, requires huge computa-

tion resources. But, this is not a big deal in the cloud-computing era.

5

This thesis follows the following organization: Chapter 2 presents theoretical foundations of

concepts used throughout the thesis. In Chapter 3, we present our approach to source device

attribution of highly compressed and stabilized videos. Experimental results are given in

Chapter 4. Chapter 5 concludes our dissertation and gives future perspectives.

6

2. THEORETICAL FOUNDATIONS

In this chapter, we present theoretical concepts used throughout the thesis. These concepts

are mainly related to three topics: The Photo-Response Non-Uniformity Response (PRNU)

of digital camera sensors and its use in image/video source device attribution, the H.264/AVC

video compression standard, and digital video stabilization.

2.1 PRNU of digital camera sensors and its use for image source attribution

This section introduces the PRNU of digital camera sensors and shows how it is used to

perform source attribution for digital media. Before that,we describe the image acquisition

process in modern digital cameras, and give for each step of the acquisition the artifacts which

can be used for forensics tasks.

2.1.1 The image acquisition process and its artifacts

Figure 2.1 gives a simplified view of the image acquisition process as it is performed in mod-

ern digital cameras. The image/video acquisition process starts with a lens which focuses

ADC

Input Scene
Lens CFA

Imaging
Sensor

Microprocessor
Digital
Image

Storage
Analog To

Digital
Converter

Figure 2.1. Image acquisition pipeline

a scene that lands on a monochromatic image sensor passing through a Color Filter Array

7

(CFA). The CFA is a matrix of small squared optical filters (corresponding to the sensor’s

pixels) that filter one of the elementary colors (red, green or blue), and organized according

to a given pattern (generally the BAYER patterns). Thanks to the CFA, it is possible to acquire

colored images using monochromatic image sensors. The colored imaged is obtained by in-

terpolating the available color information for each pixel. The imaging sensor array converts

the light that falls on each of its cells (pixel) to a voltage. An Analog to Digital Converter

(ADC) then converts the voltage into digital values. There are mainly two types of imag-

ing sensor technologies: the CCD (Charge-Coupled Device) and CMOS (Complementary

Metal Oxide Semiconductor), which are all made of silicon. The result of the digitalization

of the acquired image is a mosaiced image which will be processed by a microprocessor or

an ASIC. The processor in the camera performs various operations notably the demosaicing.

After demosaicing, the microprocessor applies some image enhancement operations such as

white balance, gamma correction on the demosaiced image. The last step is the compression

of the acquired image or video frame before its storage into the embedded storage medium.

Components and algorithms used in image acquisition are far from being perfect. Each of

them creates artifacts on acquired images/videos, which, even though they do not visibly

influence the subjective quality of images/videos, may be used for digital image/video foren-

sics task. The most significant artifacts created by the camera’s components or processing

algorithms are;

• The lens distortion and chromatic aberrations

The most significant imperfections of the camera lens are the radial distortion and chro-

matic aberrations. The camera lens radial distortion causes straight lines in the scene

to become curved lines on the camera sensor. This imperfection of the lens is used in

(Choi et al. 2006) to perform image source identification. Chromatic aberrations are

due to the fact that the response of the lens depends on the wavelength of the incident

light. Because of that, different colors fail to fall at the same position on the camera

sensor. The lens chromatic aberrations are used in (Van et al. 2007) as cues to perform

8

source device (cell phone) attribution for digital images.

• CFA demosaicing artifacts

The demosaicing operation reconstitutes the pixel’s missing color components by per-

forming an interpolation on the available color information. Depending on the inter-

polation method used, demosaicing will introduce a specific correlation between color

values of a given pixel and those of its neighbors. It is, thus, possible to identify a spe-

cific demosaicing algorithm by studying the dependencies of colors between neighbor-

ing pixels. The demosaicing artifacts are used in (Bayram et al. 2005) to discriminate

camera models.

• Imaging sensor imperfections

Imaging sensors are electronic components made of silicon and, therefore possess im-

perfections due to the inhomogeneity of the silicon and imperfections in manufacture

processes. The imaging sensor imperfections create a pattern noise which is present in

all images and videos frames taken with the camera. The pattern noise is specific to

each sensor (even sensors coming from the same wafer have different pattern noise) and

is composed of two main components: The Fixed Pattern Noise (FPN) and the Photo

Response Non-Uniformity (PRNU) as displayed in Figure 2.2 (Lukas et al. 2006). The

Pattern noise

FPN PRNU

PNU
Low frequency

defects

Figure 2.2. Components of the imaging sensor pattern noise

9

FPN is due to dark currents and represents the pixel-to-pixel differences when the sen-

sor is in complete darkness. High-end consumer cameras automatically remove the

FPN by subtracting a dark frame from the acquired image. The PRNU which repre-

sents the dominant component of the pattern noise in natural images is the sum of two

quantities: PNU and the low-frequency defects. The PNU is due to silicon inhomo-

geneity and manufacture process imperfections which cause each cell (pixel) of the

sensor array to have a different response characteristic (its capacity to convert incident

light to current). The low-frequency defects are not intrinsic to the sensor and origi-

nate from light refraction on dust particles and zoom settings. The PRNU estimation

process performs high-pass filtering and, thus, naturally removes the low-frequency

defects. Therefore, in the remaining part of the text, we will refer to PNU as PRNU.

PRNU has the following properties that make it a reliable quantity for multimedia

forensics tasks Fridrich (2009) :

1. Dimensionality. The fingerprint is stochastic in nature and has a large informa-

tion content, this fact makes it unique to each sensor.

2. Universality. All imaging sensors (CCD or CMOS) exhibit PRNU.

3. Generality. The PRNU noise pattern is present in every picture, independent of

the camera optics, settings or scene content (exception made of completely dark

images).

4. Stability. The PRNU pattern noise is stable over time and under a wide range of

environmental conditions (temperature, humidity).

5. Robustness. The PRNU pattern noise survives various operations such as filter-

ing, gamma correction and many other typical processing.

• Post processing and compression algorithm artifacts

10

Before its final storage, the camera compresses the image or video frame in order to

reduce the space it will take on the storage media. The compression is done using spe-

cific algorithms leaving some cues in the compressed image or video. Nowadays, most

digital cameras use the JPEG algorithm for image compression and the H.264/AVC for

video compression. JPEG image compression divides the image to be compressed in

8×8 sized blocks, quantizes and entropy-codes the DCT transform of each block. The

quantization matrix used to quantize DCT coefficients is a design choice that depends

on the camera manufacturer. Farid (2006) uses artifacts generated by JPEG compres-

sion to perform source device model identification for images. Video compression

standards like H.264/AVC (that we will describe in a subsequent section) imply a suc-

cession of complex operations which leave cues in the form of artifacts in the com-

pressed video. Su et al. (2009) uses artifacts due to motion estimation algorithms to

identify the brand of the camera from which a given video originates; they also use the

same approach to identify the software which has been used to compress a given video.

2.1.2 Camera sensor output model

As we have mentioned in the previous section, the PRNU pattern noise is due to differences

in the responses of sensor cells. These differences can be quantified using a matrix, K, of the

same size with the sensor. In order to establish a method to estimate K, we need to derive

a mathematical expression of the camera sensor output. Let us consider Y, a matrix of the

same size with the image sensor that represents the light that falls on the image sensor. The

digitalized output of the sensor is I given by (2.1), in which all operations are element-wise

(this will be the case for all matrix operations in this text).

I = gγ .[(1+K)Y+Ω)]γ +Q. (2.1)

In (2.1), g is a gain factor and γ is the gamma correction factor. The PRNU matrix K is a

zero-mean noise like-signal. Ω is the sum of noises due to dark current, shot noise and read-

11

out noise. Q is the noise due to quantization and JPEG compression. By factorizing (2.1) by

Y and taking the two first terms of its Taylor expansion at Y = 0, we obtain the following:

I = gγ .[(1+K)Y+Ω)]γ +Q = (gY)γ .(1+ γK+ γΩ/Y)+Q = I(0) + I(0)K+Θ. (2.2)

In (2.2), I(0) = (gY)γ is the sensor ideal output, which is the output it would have if the

sensor was perfect. γI(0)K, that we will simply note I(0)K (the factor γ has been included in

the fingerprint matrix K) is the noise due to PRNU. Θ = γI(0)Ω/Y+Q is the modeling noise.

2.1.3 Camera sensor fingerprint estimation

Based on the camera sensor output model given in (2.2), we derive a mathematical method to

estimate the camera fingerprint. What we mean by camera fingerprint is just a good estimate

of matrix K. A straightforward method for calculating K̂, an estimate of K, can be found in

(Fridrich 2009). For a given image, by subtracting the denoised image Î(0) = F(I) from both

sides of (2.2), we obtain the image noise residual given in (2.3).

W = I− Î(0) = IK+ I(0)− Î(0) + (I(0)− I)K+Θ = IK+Φ (2.3)

In (2.3), the noiseless image Î(0) = F(I) is obtained with a wavelet-based denoising filter,

as described in (Mihcak et al. 1999). Φ = I(0)− Î(0) + (I(0)− I)K+Θ is the sum of Θ and

additional terms introduced by the denoising filter.

Given a set of d images taken with the same camera, a maximum-likelihood-based estimation

of K can be performed using (2.4) (Fridrich 2009).

K̂ =

d
∑

k=1
WkIk

d
∑

k=1
(Ik)2

(2.4)

12

The computation of the fingerprint estimate K̂ is based on the noise residual Wk which does

not contain only the noise due to PRNU (and other sources of noise) but also eventually the

high frequency content of the sample image. This is illustrated by Figure 2.3, where we

can see in sub figure (d) how the high frequency content (corresponding to the contours in

the image) dominates over the PRNU noise. It is, thus, advised to use flat content images

for fingerprint estimation. (Fridrich 2009) states that from 10 to 25 flat content images are

enough to obtain a good estimate of a camera fingerprint, and that an estimation of the same

accuracy using natural images requires twice the number of images.

(a) Low textured image (b) Textured image

(c) Noise residual from low tex-
tured image

(d) Noise residual from textured
image

Figure 2.3. Influence of image content on the estimated noise residual (pictures are from the
VISION dataset)

The result of the fingerprint estimate given by (2.4) does not contain only the PRNU pattern

noise unique to each camera sensor, but also artifacts introduced by processing algorithms

used in image acquisition process such as CFA demosaicing and JPEG compression. These

artifacts are the same for cameras of the same brand/model and together form what is called

the linear pattern, meanwhile the noise pattern due to the PRNU only is called the reference

13

pattern. Figure 2.4 gives a crop of the reference pattern and the linear pattern estimates for

an exemplar of Samsung Galaxy S3 Mini smartphone camera. It is necessary to remove the

(a) Reference pattern (b) Linear pattern

Figure 2.4. Reference and linear patterns for an exemplar of Samsung Galaxy S3 Mini
smartphone camera

linear pattern from the fingerprint in order to be able to discriminate cameras from the same

model. Filler et al. (2008) used the linear pattern to identify the brand and model of the

camera from which an image originates. Removing the linear pattern from the fingerprint is

a straightforward task. Since it appears periodically as the averages of rows and columns of

K̂, it is enough to subtract these averages from rows and columns of K̂. For the purpose of

language simplicity, in the remaining part of this text, we will refer to the reference pattern

simply as the fingerprint.

2.1.4 PRNU-Based image source identification

PRNU-based source attribution for digital images has been deeply studied in (Lukas et al.

2005), (Lukas et al. 2006), (Goljan et al. 2007), (Goljan and Fridrich 2008), (Goljan et al.

2009), (Fridrich 2009). In all these research works, the source attribution is done according

to the pipeline given in Figure 2.5

The source attribution of a given image with an estimated PRNU noise N and a camera that

14

Low textured images

PRNU noise residual

Denoising
Maximum likelihood

estimation

Camera fingerprint

Query image Query image PRNU
noise residual

Correlation/PCE

Decision

Denoising

Figure 2.5. Principle of PRNU-based source device attribution for digital images

has a fingerprint F is formulated as a two-channel hypothesis testing as given in (2.5) (Goljan

and Fridrich 2008).

H0 : F �= N

H1 : F = N
(2.5)

The classification is based on the computation of the peak (ρpeak) in the normalized cross

correlation matrix ρ(r,c) between F and N defined as;

ρ(r,c) =

m
∑

i=1

n
∑
j=1

(F(i, j)−F)(N(i+ r, j+ c)−N)

||F−F||||N−N|| (2.6)

In (2.6), F and N represent the average of matrices F and N respectively. Operator ||X || is the

Euclidean norm, r and c are shift parameters ranging from 1 to m and 1 to n, respectively.

The Peak to Correlation Energy (PCE) is suggested in (Fridrich 2009) as a robust way to

measure the sharpness of the highest peak in the normalized cross correlation matrix. For

a given maximum peak value ρpeak in the normalized cross correlation matrix, its PCE is

defined as follows:

PCE(ρpeak) =
ρ2

peak
1

mn−|N| ∑
r,c�∈N

ρ(r,c)2
(2.7)

15

In (2.7), N is a small region surrounding ρpeak and |N| its cardinal. An aggregation threshold

τ is defined, and, the null hypothesis (H0) is rejected if the PCE(ρpeak) value is greater than

τ and H1 is rejected elsewhere.

For color images (which is generally the case), three fingerprints K̂R, K̂G, K̂B, that correspond

to the three color channels (red, green, and blue) are estimated and combined using the RGB

to gray scale conversion equation given by (2.8).

K̂ = 0.29K̂R +0.58K̂G +0.11K̂B. (2.8)

It is on the above notes that we end this section about the PRNU of digital camera sensors

and its usage for image source attribution. The next section will present the basis of the

H.264/AVC compression standard.

2.2 The H.264/AVC video compression standard basics

In this section, we present key aspects of the H.264/AVC (Advanced Video Compression)

video compression standard with the aim of determining how operations involved in video

compression affect the PRNU residual noise in video frames. The H.264/AVC video com-

pression standard is a wide subject which cannot be treated in its fullness here, we will only

focus on its aspects which are relevant to source attribution of compressed videos. The reader

can refer to (Richardson and E. 2010) for a complete and comprehensive guide about the stan-

dard and to (JVT 2016) for the all technical details.

The H.264/AVC video compression standard is the world’s leading standard for video com-

pression. Nowadays, it is used by almost all smartphones and video-sharing platforms (or

social media) like YouTube and Facebook. The H.264/AVC standard is managed by the JVT

(Joint Video Team), its first version was released in 2003 and is expected to be replaced by

the H.265/HEVC (High-Efficiency Video Coding) standard in the next decade.

16

Figure 2.6 gives the block diagram of an H.264 encoder/decoder. The figure presents the main

principles on which modern video compression standards rely. These principles are; block

processing, prediction, transform, quantization, and entropy coding. All these operations

(except entropy coding) are performed separately on luminance (Y) and chroma (Cr, Cb)

components of video frames. As it is the case for lossy image compression algorithms like

JPEG, H.264 takes advantage of the Human Vision System’s (HVS) low sensitivity to color,

and subsamples the color information. Various chroma sub-sampling schemes are possible :

4:4:4 (no sub-sampling), 4:2:2 and 4:2:0. Figure 2.7 shows the 4:2:0 sub-sampling scheme

which is the sub-sampling scheme used in low or middle quality videos. For 4 pixels in

vertical and horizontal axes, 2 Cr and 2 Cb pixels are used.

Intra/inter

-

Intra-frame
prediction

Motion
compensation

Coder
control

Transform/
scal./quant. Quant.

transf. coeffs

Control
data

Deblocking
filter

Entropy
coding

Motion
data

Output
video
signal

Scaling and
inv. transform

Input
video
signal

Split into
Macroblocks
16x16 pixels

Motion-
compensation

Motion
estimation

Figure 2.6. Block diagram of an H.264/AVC encoder/decoder (Marpe et al. 2006)

2.2.1 Block processing

An H.264 encoder divides input frames into one or more slices containing Macroblocks (MB)

of size 16×16. According to the type of prediction used, Macroblocks are divided in blocks

or sub-Macroblocks of various size as we will show later. Figure 2.8 presents an example

17

Y sample

Cr sample

Cb sample

Figure 2.7. 4:2:0 color sub-sampling scheme (Richardson and E. 2010)

of block partitionment in a P frame, low textured blocks are partitioned in bigger blocks

meanwhile smaller blocks are used for textured regions of the frame.

Figure 2.8. Example of partition choices for a P frame (Richardson and E. 2010)

18

2.2.2 Prediction in H.264

Video compression algorithms use prediction to take advantage of high redundancies present

in videos. It is a process through which a set of prediction values (previously encoded and

decoded blocks), also called reference(s), is used to predict the values of the current block.

A prediction residue (the difference between the current values and the reference values) is

then formed, and since it often has small values, it requires fewer bits to be represented. Fig-

ure 2.9 presents the principle of prediction residue computation as performed in inter-frame

prediction. Frame 1 is used as reference to predict Frame 2 and Frame 2 residue is the dif-

ference between . The Frame residue has small values except in regions where there is a

big difference between the two frames. There are two types of prediction in modern video

(a) Frame 1 (b) Frame 2 (c) Difference

Figure 2.9. Principle of prediction residue computation in inter-frame prediction (Richardson
and E. 2010)

compression standards illustrated in Figure 2.10 : intra-frame prediction (or just intra predic-

tion), which exploits spatial redundancy; and inter-frame prediction (or just inter prediction),

which exploits temporal redundancy. In intra-frame prediction, reference values and values

to be predicted are in the same frame. Previously encoded neighboring samples are used as

references. In H.264, intra-prediction is performed on blocks of size 16×16 , 4×4 or 8×8

(Only in high profile encoder). Figure 2.11 presents intra-frame prediction modes used with

16×16 and 4×4 sized blocks. In Figure 2.11, Arrows, when present, show which and how

reference samples are used to predict samples in the block which is to be predicted. The

DC mode (mode 2) is a particular mode in the sense that it uses a single prediction value

19

Previously coded samples

Current block

(a) Intra-frame prediction

MB1

MB2

past frames future frame

current frame

(b) Inter-frame prediction

Figure 2.10. Principle of intra-frame and inter-frame predictions (Richardson and E. 2010)

which is the average of all reference samples. In H.264 intra-frame predicted Macroblocks

are called I Macroblocks. In inter-frame prediction, reference values are located in past and

..............

H

V
.
.
.
.

H

V

H

VMean(H+V)

H

V

0 (vertical) 1 (horizontal) 2 (DC) 3 (plane)

(a) 16×16 intra-prediction modes

Mean
(A..D,
I..L)

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

2 (DC)0 (vertical) 1 (horizontal) 4 (diagonal down-right)3 (diagonal down-left)

5 (vertical-right) 7 (vertical-left) 8 (horizontal-up)6 (horizontal-down)

(b) 4×4 intra-frame prediction modes

Figure 2.11. Intra-prediction modes for 16× 16 and 4× 4 sized blocks (Richardson and E.
2010)

future frames (see Figure 2.10 (b)). To optimize the efficiency of operations involved in

inter-frame prediction (motion estimation and motion compensation), inter-frame prediction

uses a different scheme for block partitioning. Figure 2.12 presents the block partitioning

scheme used in inter-frame prediction. Inter-frame prediction is based on motion estimation

and motion compensation. Motion estimation, which is applied on Macroblock partitions (or

sub-Macroblock partition) consists of estimating the motion of a block in the current frame

20

3

0 0

0 0

1

1

1

00 1
0

1

0 1

2 3

2

Macroblock (16x16)

16x16 8x16 16x8 8x8

8x8 4x8 8x4 4x4

Macroblock
Partitions:

Sub-Macroblock
Partitions:

Figure 2.12. Macroblock partitioning in inter-frame prediction (Richardson and E. 2010)

from past and future frames. In other words, motion estimation estimates the position of the

predicted block in past or future frames. The result of motion estimation is the predicted

block’s motion vector used to perform motion compensation. Motion compensation applies

the estimated motion vector to the predicted block and subtracts the reference block from

the motion compensated block to obtain the block’s prediction residue. There are two types

of inter-frame predicted Macroblocks which are P and B Macroblocks. P Macroblocks are

predicted only from Macroblocks in past frames while B Macroblocks are predicted from

Macroblocks in past and future frames.

An H.264-encoded video may contain three types of frames: I, P, and B frames. I frames are

frames that contain only I predicted Macroblocks, P frames contain I and P Macroblocks, and

B frames contain I, P and B Macroblocks. Encoded frames are gathered in structures called

GOP (Group Of Pictures). GOPs always start with I frames. It is important here to highlight

the fact that prediction does not result in any loss of information since the prediction residue

21

can be used to correct prediction errors.

2.2.3 Transform and Quantization in H.264

Transform aims to reduce the statistical correlation between prediction residue values such

that most of the information these values contain can be concentrated in a small set of sam-

ples. Quantization reduces the precision of transformed samples in order to reduce the num-

ber of bits necessary to represent them.

In H.264/AVC, a 2-dimensional Discrete Cosine Transform (2D-DCT) and its inverse (2D-

IDCT) are used to perform the transform operation. The 2D-DCT Cx,y for a block Ii, j of size

N x N is defined by (2.9).

Cx,y =
N−1

∑
i=0

N−1

∑
j=0

Ii, jcos
�
(2x+1)iπ

2N

�
cos

�
(2y+1) jπ

2N

�
(2.9)

In a matrix form, the 2D-DCT can be written as given by (2.10) where A is an orthogonal

matrix defined by (2.12) for a 4×4 sized 2D-DCT transform.

C = A.I.AT (2.10)

A =

1
2

1
2

1
2

1
2�

1
2

cos(π
8)

�
1
2

cos(3π
8) −

�
1
2

cos(3π
8) −

�
1
2

cos(π
8)

1
2 −1

2 −1
2

1
2�

1
2

cos(3π
8) −

�
1
2

cos(π
8)

�
1
2

cos(π
8) −

�
1
2

cos(3π
8)

(2.11)

A =

0.5 0.5 0.5 0.5

0.653 0.271 −0.271 −0.653

0.5 −0.5 −0.5 0.5

0.271 −0.653 0.653 −0.271

(2.12)

22

To cope with limited computing capabilities of embedded devices (such as smartphones or

tablets), H.264 does not use (2.9) to perform the 2D-DCT but uses a fixep-point approxima-

tion by scaling each row of (2.12) with a factor of 2.5 and rounding it to the nearest integer.

The 4× 4 2D-DCT integer transform core used in H.264 is given in (2.13). 8× 8 2D-DCT

integer core transform which are used in high profile encoders are built in the same way.

A =

1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1

(2.13)

In (2.9), C0,0 represents the DCT-DC component of the block transform and the other coef-

ficients are DCT-AC coefficients. DCT-AC coefficients are reorganized in a linear array in

such a way that most of non-zero coefficients are located at the beginning of the array and

appear in increasing frequency, this is illustrated in Figure 2.13.

start

end

Figure 2.13. Zigzag addressing : DCT coefficients appear in increasing frequencies
(Richardson and E. 2010)

DCT coefficients are then quantized to reduce the range of values each coefficient can take

and thus reduce the number of bits necessary to represent them. For a DCT matrix C, the

quantized matrix �C is given by (2.14) in which Q is the quantization step.

�C = round
�

C
Q

�
(2.14)

23

Contrary to JPEG compression where the transform matrix coefficients are quantized with

quantization matrices that perform fine quantization on low-frequency components and coarse

quantization on high-frequency components (in order to take advantage of the Human Visual

System’s low sensitivity to high frequencies), H.264 quantizes all the transform coefficients

using the same quantization step (except for High profile encoders which use the same quan-

tization scheme used in JPEG compression).

Figures 2.14, 2.15, and 2.16 present how H.264 performs direct and inverse transform and

quantization of the Macroblock residue’s Luma and Chroma components using 4× 4 and

8 × 8 DCT transform cores. 8 × 8 cores are used only for the Luma component in high

profile encoders. It is important to highlight that among all the operations involved in

Core 4x4
transform

Cf4

Scaling and
quantization

Mf4

16x16 luma samples Transform coefficients
Quantized coefficients

DC 4x4
transform

0

DC

AC

AC

DC

1

3

9

11

2 5 6

4 7 8

10 13 14

12 15 16

(a) Direct transform and quantization of a Macroblock Luma component

Quantized coefficients

0

AC

DC

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

DC 4x4
inverse

transform

Quantized coefficients (2)

Scaling and
inverse

quantization
Vi4

Core 4x4
transform

Ci4

Transform coefficients

DC

AC

16x16 luma samples

(b) Inverse transform and quantization of a Macroblock Luma component

Figure 2.14. Macroblock Luma direct and inverse transform and quantization with a 4× 4
DCT transform core (Richardson and E. 2010)

video compression, quantization is the only irreversible one, and, therefore leads to a loss of

information.

The last step in the video compression process is entropy coding of compression data (con-

24

Core 4x4
transform

Cf4

Transform coefficients

DC 2x2
transform

Scaling and
quantization

Mf4

3

4 5

2

0

DC

AC

Cb

DC

8

6

9

7

1

8x8 Cb, Cr samples

Cr

(a) Direct transform and quantization of a Macroblock Chroma component (4:2:0)

Core 4x4
inverse

transform
Ci4

DC 2x2
inverse

transform

Scaling and
quantization

Vi4

3

4 5

2

0

DC

AC

Cb

DC

7

8 9

6

1

8x8 Cb, Cr samples
Cr

Quantized coefficients Quantized coefficients (2) Transform coefficients

(b) Inverse transform and quantization of a Macroblock Chroma component (4:2:0)

Figure 2.15. Macroblock Chroma direct and inverse transform and quantization with a 4×4
DCT transform core (Richardson and E. 2010)

Core 8x8
transform

Cf8

Scaling and
quantization

Mf8

16x16 luma samples Transform coefficients Quantized coefficients

0 1

2 3

(a) Direct transform and quantization of a Macroblock Luma component

Core 8x8
transform

Ci8

Scaling and
quantization

Vi8

16x16 luma samplesTransform coefficientsQuantized coefficients

0 1

2 3

(b) Inverse transform and quantization of a Macroblock Luma component

Figure 2.16. Macroblock Luma direct and inverse transform and quantization with a 8× 8
DCT transform core (Richardson and E. 2010)

trol data, quantized transform coefficients, intra-prediction data, motion vectors...). Entropy

coding is based on information theory and aims to reduce the number of bits necessary to

represent the encoded bitstream. Since entropy coding has no impact on encoded data (it

cannot lead to any loss of information), we will not detail it here.

25

2.2.4 H.264/AVC profiles

H.264/AVC is meant to be used for various purposes (such as video conference, recording,

and streaming) and on platforms with different computing capabilities. Thus, it defines pro-

files which are sets of operations an encoder/decoder implementing a given profile should be

able to perform. Figure 2.17 presents H.264/AVC profiles and their features. The Baseline

profile was meant to be used in devices that have the minimum computational capabilities;

this is the reason why it is used in many smartphones. The Main profile was designed with

the aim of providing a maximum coding efficiency. The High profile improves the coding

efficiency of the Main profile, it uses additional compression features such as 8× 8 intra-

frame prediction, 8× 8 DCT transform core, scaling matrices to perform DCT coefficients

quantization (as performed in JPEG image compression).

CABAC
8 x 8 transform

HIGH

Up to 10b
sample

bit depth

HIGH 10
HIGH 4:2:2

MAIN

8 x 8
spatial
prediction

Monochrome
format

Scaling
matrices

4:2:2
chroma
format

CAVLC

EXTENDED
SI and SP
slices

ASO BASELINE

B slices

I and P slices

In-loop deblocking MBAFF

Intra prediction

Redundant
pictures

Data
partitioning

Field
coding

Weighted
prediction

Motion-compensated
prediction

FMO

Figure 2.17. H.264/AVC profiles (Marpe et al. 2006)

2.3 Effects of video compression on the PRNU noise in video frames

Video compression is a complex process which obviously affects the PRNU noise contained

in video frames. As we have highlighted in Section 2.2, quantization is the only irreversible

operation involved in video compression which leads to a loss of information (if we do not

take in account rounding errors due to integer DCT transform). In order to investigate the

26

effects of video compression on PRNU noise contained in video frames, we give in Figure

2.18 operations the PRNU noise in a block goes through during encoding and decoding. Let

from
prediction

Entropy
encoder

Transform/scale
quantize

...

Scale/inverse
transform

+

-

+

+

Current frame or field

Intra

Inter

Current
Block

Prediction
Block

Residual
Block

Decoded
Residual Block

Coded bitstream

Previously coded
frame or field

Wbcur Wbδ

bW˜ ref

bW˜ cur

bWˆ δ

bW˜ δ

Figure 2.18. Operations applied on a block’s PRNU noise during the block’s encoding/de-
coding

us consider a block which is to be encoded. We note Wbcur as the PRNU noise the block

contains, �Wbcur as the PRNU noise that will remain in the block after it has been encoded and

decoded, �Wbref as the PRNU noise contained in the reference block (a previously encoded

and decoded block), Wbδ as the PRNU noise in the current block’s prediction residue (see

Fig. 2.18). The operations applied to the PRNU noise throughout the block’s encoding and

decoding processes are given by the following equations. The block’s PRNU noise residue is

given by

Wbδ = Wbcur −�Wbref (2.15)

The output of the DCT transform , scaling, and quantization operations for the residue input

can be written as follows

�Wbδ = Quant[Scale[DCT(Wbδ)]] (2.16)

27

The block reconstruction (decoding) equation is given as follows

�Wbcur =�Wbref +DCT−1[Scale(�Wbδ)] (2.17)

The result of the block reconstruction equation in (2.17) depends on the DCT inverse trans-

form of the block’s DCT coefficients matrix and :

If �Wbδ = 0 ⇒�Wbcur =�Wbref (2.18)

If �Wbδ �= 0 ⇒�Wbcur ≈ Wbcur (2.19)

Equations (2.18) and (2.19) show that the PRNU noise in the encoded block is not (com-

pletely) lost if the DCT-AC coefficients of the encoded block are not all null (because the

PRNU noise is by nature a high frequency signal). The strength of the PRNU noise remain-

ing in the decoded block depends on the number of its non-null DCT-AC coefficients and

on the scene content, since it has been proven in (Li 2010) (and Section 2.1.3) that high-

frequency content scenes affect the quality of the PRNU noise estimation. If all the DCT-AC

coefficients (Luma and Chroma) associated to a Macroblock are null, then its PRNU noise is

irreversibly lost and replaced by the one in its prediction block(s). To illustrate how compres-

sion degrades the PRNU noise in video frames, Figure 2.19 presents an I frame from a highly

compressed (YouTube) video and its estimated PRNU noise. We notice that for uniformly

textured regions the estimated PRNU noise is also uniform (with some block effects). This

is explained by the fact that Intra-frame prediction and DCT transform applied to uniformly

textured regions give small-valued DCT-AC coefficients that will fade to zero when they are

(highly) quantized. The PRNU noise in predicted blocks is, therefore, equal to the one in its

reference blocks. When the prediction value is a weighted sum of prediction samples (like

in DC intra-prediction mode shown in Figure 2.11), the PRNU noise of all the pixels in the

block is replaced by the weighted sum of prediction samples’ PRNU noise values and thus it

results a uniform PRNU noise region.

28

(a) An I frame from a highly compressed video

(b) PRNU noise estimated from the I frame

Figure 2.19. Video compression effect on the PRNU noise (the contrast has been adjusted to
improve visibility)

2.3.1 Open source softwares for H.264/AVC video encoding/decoding

We present here some useful Open-source softwares that can be used for H.264 video en-

coding/decoding and to extract information related to encoded videos. These softwares are:

FFmpeg, FFprobe, and the jm H.264/AVC reference encoder/decoder software.

• FFmpeg: FFmpeg (2018) is an open-source library/tool which can be used for video

encoding, decoding, transcoding, filtering, and streaming. It supports various video

codecs such as H.264/AVC, H.265/HEVC. Thanks to it, it is possible to extract all

29

frames or a subset of frames (I, P, B frames) from an input video. FFmpeg also pos-

sesses a tool for video stabilization called deshake.

• FFprobe: ffprobe is a tool included in FFmpeg. It is meant to be used to extract

information from a multimedia stream (in our case, information about a video such as

video resolution, video bit rate, encoding profile, and type of each frame) and prints it

in human and machine-readable format.

• The jm reference software: The JM software (JVT 2016) is the official reference

H.264/AVC video encoding/decoding software held by the JVT. An interesting point

about the JM software is that it has the option to create a trace log file (under the form

of an xml file) containing related to encoding/decoding processes while performing

video encoding/decoding. Five log levels are available. Table 2.1 gives the information

included in the trace log file according to the log level selected.

Table 2.1. Information included in the JM log file according to the log level

Log level Information included

0 Slice and NAL headers
1 Macroblock headers
2 SubMacroblock headers
3 Motion vectors
4 Macroblock DCT coefficients

2.4 Overview of digital video stabilization

Digital video stabilization algorithms are used to remove shakiness from videos taken with

hand-held devices to improve viewer experience. Digital cameras can perform video stabi-

lization in real time while acquiring a video. Digital video stabilization can also be done

outside the camera using a third-party software. Some high-end cameras posses optical-

stabilization systems which use a system of mobile lenses counteracting the camera’s vibra-

30

tions. Optical stabilization has no impact on the alignment of video frames with the camera

sensor, for this reason, we will not study it.

Video stabilization is a widely studied subject, many algorithms related to it are available in

the literature as in (Chang et al. 2006), (Matsushita et al. 2006), (Grundmann et al. 2011),

(Lim et al. 2017). The complexity of operations involved in a given algorithm is one of the

most important choice criteria for a given application. Embedded devices generally use light-

weight algorithms due to their limited computing capabilities while third-party softwares can

use very complex algorithms. Most algorithms available in the literature follow the flow

process given in Figure 2.20 (Hlmg et al. 2014). Video stabilization algorithms perform

stabilization in three steps: motion estimation, motion smoothing, and motion compensation.

(a) Input video sequence with matched key points

Unstabilized
Video

Motion Estimation Motion Smoothing Motion Compensation
Stabilized
 Video

(b) Video stabilization processing flow

Figure 2.20. Video stabilization on a sample input sequence (Hlmg et al. 2014)

2.4.1 Motion estimation

Motion estimation is a crucial step for any video stabilization algorithm, it consists of de-

termining the global (or dominant) motion from one frame to another. This global motion

31

is assumed to be due to the camera motion. Common video stabilization algorithms use

feature-based (or optical-flow-based) approaches to perform motion estimation. In these ap-

proaches, features like Harris corners or SIFT (Scale Invariant Features) are computed and

matched to estimate the global motion from one frame to another. Low-cost algorithms use

2D-motion models to model global-frame motion. Table 2.2 presents elementary operations

which can be used for 2D-motion modeling (Rafael C. Gonzalez 2009). These elementary

operations are combined (by multiplying the elementary transform matrices) to form more

complex and accurate models as given by Table 2.3. Low-cost algorithms use affine motion

models because of the effectiveness of the approximation and its low cost computation.

Table 2.2. Elementary operations involved in 2D-motion modeling

Operation Transform Matrix Coordinate Equation

Identity I =

1 0 0
0 1 0
0 0 1

x
y
1

=

w
z
1

Scaling S =

Sx 0 0
0 Sy 0
0 0 1

x
y
1

=

Sxw
Syz
1

Rotation R =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

x
y
1

=

wcosθ − zsinθ
wsinθ + zcosθ

1

Shear (horizontal) Shx =

1 α 0
0 1 0
0 0 1

x
y
1

=

w+αz
z
1

Shear (vertical) Shy =

1 0 0
β 1 0
0 0 1

x
y
1

=

w
βw+ z

1

Translation T =

1 0 δx
0 1 δy
0 0 1

x
y
1

=

w+δx
z+δy

1

32

Table 2.3. Properties of 2D transformations used for motion modeling

Transformation Elementary operations # Control points Description

Rigid Rotation, translation 2
keeps angles, and straight

and parallel lines

Similarity
Rotation, scale,

translation 2
keeps angles, and straight

and parallel lines

Affine
Rotation, scale,

shear, translation 3
keeps straight

and parallel lines

Projective
Rotation, scale,

shear, translation 4
parallel lines converge

toward vanishing points

2.4.2 Motion smoothing

Motion smoothing aims to remove high-frequency motion vectors estimated in the motion

estimation stage. Motion smoothing uses low-pass filters to remove jitters from the camera

global motion.

2.4.3 Motion compensation

Motion compensation produces a stabilized video by using smoothed global motion vectors

to reconstruct the video frame by frame. When necessary, the motion compensation counter-

acts high-frequency shakiness by warping shaky frames in order to correct unwanted motion.

Warping applied to jittery frames implies scaling, rotation, shear, translation, and crop oper-

ations. These operations misalign the PRNU noise of warped frames with the camera sensor

and with the other frames. After motion compensation, post-processing operations such as

inpainting or blurring can be used to improve the quality on the stabilized video.

In this Chapter, we presented theoretical concepts used throughout this research. These con-

cepts were related to PRNU of digital camera sensors, H.264/AVC video compression and its

impact on PRNU in video frames, and digital video stabilization. Digital video is a feature of

digital cameras that makes video source device attribution a more complicated task. The next

33

Chapter will present our proposed methods for video device source attribution. We consider

non-stabilized, stabilized and highly compressed videos.

34

3. MATERIAL AND METHOD

In this chapter, we present our approach to video source-device attribution. Performing source

device attribution necessitates two quantities, the reference camera fingerprint and the query

video’s noise. In this Chapter, we present novel approach to estimate camera fingerprint and

query video noise under various circumstances such as when videos are highly compressed

and digitally stabilized.

3.1 Source device attribution for non-stabilized videos

In this section, we consider the case where the videos under investigation are non-stabilized

videos. We propose to perform source device attribution for non-stabilized videos using only

video frames. we propose two approaches, the first one is based on frame processing and the

second on block processing.

3.1.1 Frame-based approach

In the frame-based approach, we try to figure out what is the best set of frames which should

be used for camera fingerprint and video noise estimation. As we said in Chapter 2, there

are mainly three types of frames in a H.264/AVC video: I, P, and B frames. We propose to

test experimentally combinations of these types of frame as given in Table 3.1. FFmpeg is

Table 3.1. Combination of frame types for fingerprint estimation in the frame-based
approach

Case Fingerprint estimated from Video noise estimated from

FB_C1 I frames I frames
FB_C2 I frames I + P + B frames
FB_C3 I + P + B frames I frames
FB_C4 I + P + B frames I + P + B frames

35

used to extract video frames from input videos according to their types and store them in an

uncompressed image format (.bmp); FFprobe is used to extract properties of the input video

such as the types of frames, the resolution, the video bit rate ... Figure 3.1 illustrates this

process; in all cases, the fingerprint/video noise is estimated according to (3.1).

K̂ =

d
∑

k=1
WkIk

d
∑

k=1
(Ik)2

(3.1)

Iframex.bmp

Input video

FFmpeg FFprobe

Pframex.bmp
Bframex.bmp

-Video Width
-Video Height
-Video bit rate
-Number frame
-Frames type

Fingerprint
Fingerprint

Figure 3.1. PRNU fingerprints estimated from an input video

3.1.2 Block-based approach

The block-based approach relies on the conclusion of Section 2.3 where we established that,

the PRNU noise in an encoded block is destroyed (replaced by the one in its prediction

block(s)) if the DCT transform matrix of its prediction residue does not have AC component.

In the block-based approach, we parse the encoded blocks’ DCT coefficients and eliminate

those which do not have DCT-AC component. Only blocks that have at least one non-null

36

DCT-AC coefficient are used for PRNU fingerprint estimation. To parse the bitstream of

encoded videos, we used FFmpeg and a modified version of the jm 16.1 reference software

(JVT 2016). The process is given in Figure 3.2. The input video is first converted to the

.264 (H.264 codec) format using FFmpeg; then, the 264 file is decoded using jm decoder

that we modified to parse DCT coefficients of each blocks after they have been decoded.

An xml file is generated during decoding and contains for each Macroblock the following

informations: the position of the Macroblock in the frame, the type of prediction used to

encode the Macroblock, 4× 4 matrix of binary values (0 or 1) giving 4× 4 blocks in which

there is still PRNU noise. The decoding trace file is then used to build video frame masks.

ffmpeg

input video (mp4, 3gp, mov,...)

Video codec (.264)

Jm 16.1 decoder

decoded video (.yuv) decoding trace file (.xml)

Figure 3.2. H.264-video Macroblocks parsing process flow

A given frame mask Mk associated to a frame k gives pixels in the frame that still have

PRNU noise. Elements of Mk are defined in (3.2) where r and c are row and columns indexes

respectively.

Mk(r,c) =

0, If the current block’s residue transform does not have DCT-AC component

1, Else

(3.2)

Figure 3.3 gives an example of a highly compressed I frame and its frame mask. Blocks

in white are blocks which shall be used for fingerprint estimation. In the block-based ap-

proach, the fingerprint is estimated using frame masks to eliminate blocks in which there is

37

(a) Example of a highly compressed I frame

(b) Frame mask

Figure 3.3. Example of a highly compressed I frame and its associated frame mask

no remaining PRNU noise.

The formula used to estimate fingerprint in the block-based approach is given by (3.3).

K̂� =

d
∑

k=1
WkIkMk

d
∑

k=1
(IkMk)2 +1

(3.3)

38

3.2 Source device attribution for stabilized videos

Digital video stabilization makes PRNU fingerprint estimation more complicated because it

desynchronizes the PRNU noise in video frames toward each order and the camera sensor

array. The desynchronization of the PRNU noise in stabilized frames is due to geometrical

transforms (scaling, rotation, shear, translation ...) that the stabilization algorithm applies on

them to compensate for unwanted motion. It is, therefore, not possible to use frames from

a stabilized video to estimate a camera fingerprint or a video noise. Stabilized video frames

have to be resynchronized (registered) with each other before using them to estimate a video

PRNU pattern noise. The method we propose to perform source device identification of

Reference camera
fingerprint estimation

Stabilized frames
noise registration to

the reference
fingerprint

Registered frames
noise aggregation

Cross-Correlation
and PCE

computation

Decision

Figure 3.4. Proposed scheme for source device identification of stabilized videos

stabilized videos is given in Figure 3.4, it requires a good estimate of the camera fingerprint

to which stabilized frames’ noise will be registered; this is not a big deal if the suspect camera

does not feature in-camera digital video stabilization. When the suspect camera features

digital video stabilization which cannot be disabled by software (as it is the case for iPhones),

we have to find alternative methods to obtain a good estimate of the camera fingerprint. We

propose as it has been done before in (Iuliani et al. 2017) to use still images to perform a

suspect camera’s fingerprint estimation; once a reliable estimate of the camera fingerprint is

available, it can then be used as reference to register the noise from frames of a stabilized

video. In the next two subsections, we first present our method to estimate crop and scale

parameters that match a fingerprint estimated from still images with a fingerprint estimated

from video frames; then, we present our approach to register stabilized frames noise to a

fingerprint.

39

3.2.1 Estimation of sensor crop and scale parameters that match an image-based to a
frame-based fingerprint

Using still images to estimate the fingerprint of a camera featuring digital video stabilization

is a good idea since Samet Tapinar et al. demonstrated in (Taspinar et al. 2016) that a reliable

estimate of a camera fingerprint could not be obtained using stabilized frames. The problem

we have to solve in order to use a fingerprint estimated from images to perform source-

device attribution for videos comes from the fact that, even though most cameras use the

same sensor for images and videos acquisition, video resolution is in most cases far smaller

than image resolution. The reasons why cameras downgrade video resolution are first that

storing a video of few minutes (which is made up of thousands of frames) requires much

more space compared to a single still image. Secondly, video resolutions are standardized

(the 16:9 format is commonly used) which is not the case for still images.

Digital cameras downscale the sensor resolution by performing a central crop and a scaling on

the full sensor as illustrated in Figure 3.5 (Iuliani et al. 2017). To estimate the scale and crop

CAMERA FULL
SENSOR

CROPPING SCALLING

Figure 3.5. Sensor resolution downscaling process in video acquisition

parameters of a given camera sensor, we need a fingerprint estimated from flat-content images

and a fingerprint estimated from frames of a flat-content video. When the camera features

digital video stabilization, video frames cannot be used to perform fingerprint estimation. In

this case, we match the PRNU noise estimated from each frame of a set of selected frames (I

frames) with the image-estimated fingerprint. The video used for parameter estimation is a

flat-content video acquired in motionless conditions (a camera on a tripod would be perfect)

to avoid stabilization to be performed on video frames. The matching parameters of the frame

having its PRNU noise giving the highest maximum correlation value when correlated with

40

the cropped and scaled image-based fingerprint are selected as the camera’s image-based to

frame-based fingerprint matching parameters. The final camera fingerprint (which will be

used for query video frames registration) is the copped and scaled image-based fingerprint.

Figure 3.6 gives our proposed scheme to estimate row-scaling and column-cropping param-

eters that match an image-based fingerprint to a frame noise. We proceeds in two steps. In

the first step, the row-scaling parameter is searched for. To find the row-scaling parameter,

we look for the number of rows which gives the highest maximum crosscorrelation value

when the scaled fingerprint is correlated with the (zero padded) frame noise. The scaling

is performed only according to rows so that the aspect ratio of the image-based fingerprint

is preserved. In the second step, we look for the row-cropping parameter, this is done sim-

ply by correlating the row-scaled image-fingerprint with the (zero padded) frame noise. The

column-crop parameter is given by the position of the highest peak in the cross-correlation

matrix. The colum-cropping parameter is used to crop the image-based fingerprint in the

column direction and to form the final matched fingerprint. Nearest neighbor interprolation

is used for scaling operations. Figure 3.7 gives an insight of how the quantities involved in

the parameters estimation process evolve, Algorithm 1 gives the algorithm of our proposed

scheme.

Image-based Fingerprint CROPPINGROW SCALING
COLUMN

CROPPING

row- scaling parameter
column- cropping

parameter

Figure 3.6. Proposed scheme for row-scaling and column-cropping parameters estimation

41

input : imgFingerprint(imgRows× ImgCols), f rameNoise(vidRows× vidCols)

output: scaledCroppedFingerprint, rowScalingParam, columnCropParam

n ← 0;

for rows ← vidRows to imgRows do

scaledImgFingerprint ← ��������������������� (imgFingerprint,rows);

������� (scaledImgFingeprint, &rowsTemp, &colsTemp);

if colsTemp >= vidCols then

if n == 0 then

maxCorr ← �������������� (imgRows− rowsTemp+1);

f irstRows ← rowsTemp;

end

paddedFrameNoise ← �������������� (rowsTemp, colsTemp);

��������������� (&paddedFrameNoise, f ameNoise);

corr ← ����������������������� (paddedFrameNoise, scaledImgFingeprint);

maxCorr[n]← ��� (corr);

n ← n+1;

end

end

��������������� (maxCorr, &maxCorrLoc);

rowScalingParam ← f irstRows+maxCorrLoc - 1;

scaledImgFingerprint ← ��������������������� (imgFingerprint, rowScalingParam);

������� (scaledImgFingeprint, &rowsTemp, &colsTemp);

paddedFrameNoise ← �������������� (rowsTemp, colsTemp);

��������������� (&paddedFrameNoise, f ameNoise);

crosscorrMat ← ����������������������� (scaledImgFingerprint,

paddedFrameNoise);

��������������� (crosscorrMat, &maxRow, &maxCol);

columnCropParam ← maxCol;

scaledCroppedFingerprint ← ����

(scaledImgFingerprint,1,rowsTemp,1,columnCropParam);

Algorithm 1. Sensor scale and crop parameters estimation

42

1400 1600 1800 2000 2200 2400 2600

Scaled Row No

0

0.5

1

1.5

2

2.5

3

3.5

M
a
x
im

u
m

 C
o
rr

e
la

ti
o
n

#10 4

(a) row-scaling parameter estimation (b) column-cropping parameter estimation

Figure 3.7. Row-scaling and column-cropping based parameters estimation : peaks represent
searched parameters

3.2.2 Proposed scheme for stabilized video frames noise registration

Frames noise registration consist of estimating geometric transformations applied on video

frames during the video stabilization process and applying the inverse transforms to the stabi-

lized frames in order to re-align them with each other and with the sensor array. The transform

estimation process uses a reliable estimate of the query camera’s fingerprint as reference. The

reference fingerprint can be estimated using a flat-content video’s frames if the suspect cam-

era does not feature digital video stabilization. If the suspect camera features digital video

stabilization, the reference fingerprint can be estimated from still images using the approach

proposed in the previous Subsection. The inverses of estimated geometric transforms are

then used to register each frame noise to the reference fingerprint. The final video noise is

the weighted sum of all registered frames noise.

Up to now, all related researches available in the literature register the stabilized frames noise

using either a rigid transform (rotation and translation) like in (Taspinar et al. 2016) or a

similarity transform (scaling, rotation, translation) like in (Iuliani et al. 2017). We propose

to use an affine transform (scaling, shear, rotation, translation) which is more general than

43

the previous transforms and which is the one used in popular third-party video stabilization

softwares like YouTube Stabilizer (Grundmann et al. 2011) or vidStab of FFmpeg.

An affine transform matrix is defined as follows:

T=

m00 m01 tx

m10 m11 ty

with m00 = Sx(cosθ +Shxsinθ), m01 = SxShy(cosθ +Shxsinθ)+Sxsinθ ,

m10 = Sy(Shxcosθ − sinθ),m11 = SyShy(Shxcosθ − sinθ)+Sycosθ .

Sx and Sy are the horizontal and vertical scaling ratio respectively, θ the clockwise rotation

angle, Shx and Shy the horizontal and vertical shear parameters , tx and ty the horizontal and

vertical translation parameters.

Let us consider P =

x

y

 a point in the plan, its affine transformed point P� is given by

P� =

x�

y�

=

m00x+m01y+ tx

m10x+m11y+ ty

An affine transform transforms a rectangle to any parallelogram. It necessitates 3 control

points to estimate an affine transform as shown in Figure 3.8. Affine transforms are also

effective to model small perspective transforms (Adrian Kaehler 2017). In previous works,

Affine
Transform

Figure 3.8. Affine transform of a rectangle with its control points

a brute force search is used to search for the transform parameters. We propose a multi-step

search based on control points (moving and fixed points) to estimate affine transforms. The

44

maximums of cross-correlation matrices between the warped reference fingerprint and the

frame noise are used as the decision criterion. The parameters search is performed in three

passes with the spacing between fixed points reducing after each pass. Best points obtained

at a given pass are used as centers for point grids generated at the next pass. We choose to

warp the reference fingerprint because it has a better Signal to Noise Ratio (SNR) compared

to the frame noise. For warping operations, we use inverse maping and nearest neighbor

interpolation methods; warped frames noise are cropped if their sizes are above the frame

size and zero padded if they are smaller; undefined pixel have zero as value. Figure 3.9

illustrates our proposed scheme for affine transform estimation and Algorithm 2 details it. In

Figure 3.9, the red rectangle represents the frame noise and warped rectangles are warped

fingerprint (for the purpose of simplicity few combinations are represented).

45

Input arguments: camFingerprint : rowsxcols , f rameNoise : rowsxcols
Returned values : warpedFrameNoise, crosscorrMatrix, trans f ormMatrix

������������������ ← ������������������ ← (−cols
2 , rows

2);
������������������� ← ������������������� ← (cols

2 , rows
2);

��������������������� ← ��������������������� ← (− cols
2 ,− rows

2);
����������� ← {5,2,1};
������������ ← 4;
����������� ← (������������ * 2 +1)*(������������ * 2 +1);
for n ← 0 to 2 do

����������������� ← ����������������������� (������������������, �����������

(n), ������������);
������������������ ← ����������������������� (�������������������,
����������� (n), ������������);

�������������������� ← ����������������������� (���������������������,
����������� (n), ������������);

������� ←−In f ;
for i ← 0 to �����������-1 do

for j ← 0 to �����������-1 do
for k ← 0 to �����������-1 do

������������������� ← ������������������ (������������������,
�������������������, ���������������������, ����������������� (i),
������������������ (j), �������������������� (k));

����������������� ← ���� (camFingerprint,�������������������);
������������������� ← ����������������

(�����������������, f rameNoise);
corr ← ��� (�������������������);
if corr > ������� then

������������������ ← ����������������� (i);
������������������� ← ������������������ (j);
��������������������� ← �������������������� (k);
crosscorrMatrix ← �������������������;
������� ← corr;

end
end

end
end
trans f ormMatrix ← ������������������ (������������������,
�������������������, ������������������

����,������������������,�������������������,���������������������);

trans f ormMatrix ← ��������������������� (trans f ormMatrix);
warpedFrameNoise ← ���� (f rameNoise,trans f ormMatrix);

end
Algorithm 2. Affine transform estimation

46

(a) Generated fixed points around the three moving
points

(b) Affine transform estimation, first pass (5 pixels
spacing)

(c) Affine transform estimation, second pass (2 pix-
els spacing)

(d) Affine transform estimation, third pass (1
pixel spacing)

Figure 3.9. Affine transform parameters estimation scheme

47

Fi
gu

re
3.

10
.C

om
pu

te
d

m
ax

im
um

cr
os

s-
co

rr
el

at
io

n
va

lu
es

at
ea

ch
st

ep

48

To test our method, we estimate a camera fingerprint from 50 I frames of a flat-content non-

stabilized video and the PRNU noise from an I frame of a natural-content video taken with the

same camera. The frame noise is then warped and we try to estimate the original transform

matrix using our proposed scheme. The results of this experiment are given as follows:

• Original transform matrix:

T =

 1.046 0.091 0

−0.088 1.016 0

 ,Maximum cross-correlation : 9434.06

• First pass results:

T =

 1.040 0.085 −9.126

−0.085 1.010 7.075

 ,Maximum cross-correlation : 2327.8

• Second pass results:

T =

 1.047 0.090 −8.638

−0.090 1.015 7.075

 ,Maximum cross-correlation : 6953.8

• Third pass results:

T =

 1.046 0.092 −4.638

−0.088 1.016 2.571

 ,Maximum cross-correlation : 8807.3

These results show that our proposed method is capable of estimating the original transform

with a high accuracy; tx =−4.638 and ty = 2.571 are translation parameters; they are not null

because of undefined pixels introduced by warping.

In our scheme for affine transform estimation, 81 fixed points for each control point are

used at each pass; this represents a total of 81× 81× 81× 3 = 1 594 323 cross-correlation

49

operations which have to be performed to estimate the affine transform matrix of one frame;

thus, the computations involved in our proposed scheme have to be optimized (in terms of

running time) if we want to use it to perform source device attribution of digitally-stabilized

videos (which may contain thousands of frames).

The first optimization we did concerns the implementation of the cross-correlation operation;

Equation (2.6) is not used to compute cross-correlation but we use the Fast Fourrier Trans-

form (FFT) as it has been demonstrated in (Press et al. 1992) that cross-correlation can be

efficiently implemented using FFT. Algorithm 3 details how cross-correlation is computed

using FFT operations. The cross-correlation is implemented in C++ using OpenCV 3.1.1

library (Itseez 2017).

Input arguments: matrix1, matrix2
Returned values : crosscorrMatrix

�� ����������������� ����������� ����� ���

matrix1 ← matrix1 - ���� (matrix1);
matrix2 ← matrix2 - ���� (matrix2);
f f tMatrix1 ← ��� (matrix1);
f f tMatrix2 ← ��� (matrix2);
�� �� � ������� ���� �������������� ��������

�� ∗� ������� ��������� ��������

crosscorrMatrix ← f f tMatrix1.∗ f f tMatrix2∗;
crosscorrMatrix ← ���� (crosscorrMatrix);

Algorithm 3. cross-correlation computation using FFT

The second optimization we implemented is parallelization. Given that the proposed algo-

rithm is embarrassingly parallel (all operations are totally independent), it is perfectly suited

for a multi-thread implementation. We used a Message Passing Interface (MPI) library called

Open MPI (Team 2017) which allows us to spawn threads on computers of a computer clus-

ter and implement inter-process communication. The master/slave processing scheme is used

with one master thread and the rest of spawned threads being slaves. Algorithm 4 and 5 give

a simplified overview of operations performed by the master thread and slave threads respec-

tively.

50

Input arguments: camFingerprint : rows×cols , f rameNoise : rows×cols
Returned values : warpedFrameNoise, crosscorrMatrix, trans f ormMatrix

������������������ ← ������������������ ← (−cols
2 , rows

2);
������������������� ← ������������������� ← (cols

2 , rows
2);

��������������������� ← ��������������������� ← (− cols
2 ,− rows

2);
����������� ← {5,2,1};
������������ ← 4;
����������� ← (������������ * 2 +1)*(������������ * 2 +1);
������������� (MPI_COMM_WORLD, &�����������);
�� ������������ ��� ����� �������� �� ��� ��� ����� �� ��� �������

��������� (camFingerprint, MPI_COMM_WORLD);
��������� (f rameNoise, MPI_COMM_WORLD);
for n ← 0 to 2 do

����������������� ← ����������������������� (������������������, �����������

(n), ������������);
������������������ ← ����������������������� (�������������������,
����������� (n), ������������);

�������������������� ← ����������������������� (���������������������,
����������� (n), ������������);
�� ������������ ��������� ����� ������ �� ��� ��������� �����

��������� (�����������������, MPI_COMM_WORLD);
��������� (������������������, MPI_COMM_WORLD);
��������� (��������������������, MPI_COMM_WORLD);
slaveRank = 1;
for i ← 0 to �����������-1 do

for j ← 0 to �����������-1 do
�� ������� ������� �� ������ �� �� ��������� �� ����� �������

�������� (i, j, slaveRank);
slaveRank = slaveRank+1;

end
end
�� ��������� ��� �������� ���� ���� ����� �������

�������� (&maxCrosscorr, &crosscorrPoints);
������������� (maxCrosscorr, crosscorrPoints, &������������������,
&�������������������, &���������������������);

trans f ormMatrix ← ������������������ (������������������,
�������������������, ������������������

����,������������������,�������������������,���������������������);

trans f ormMatrix ← ��������������������� (trans f ormMatrix);
warpedFrameNoise ← ���� (f rameNoise,trans f ormMatrix);

end
Algorithm 4. Master thread algorithm

51

Input arguments: camFingerprint : rows×cols , f rameNoise : rows×cols
Returned values : warpedFrameNoise, crosscorrMatrix, trans f ormMatrix

������������������ ← ������������������ ← (−cols
2 , rows

2);
������������������� ← ������������������� ← (cols

2 , rows
2);

��������������������� ← ��������������������� ← (− cols
2 ,− rows

2);
����������� ← {5,2,1};
������������ ← 4;
����������� ← (������������ * 2 +1)*(������������ * 2 +1);
masterRank = 0;
�� ��������� ���� ����������� �� ��� ������ ������

��������� (camFingerprint, MPI_COMM_WORLD);
��������� (f rameNoise, MPI_COMM_WORLD);
while (1==1) do

�� ��������� ����������� ���� ���� ��� ������ ������

��������� (&�����������������, MPI_COMM_WORLD);
��������� (&������������������, MPI_COMM_WORLD);
��������� (&��������������������, MPI_COMM_WORLD);
�� ��������� ������� �� ������ �� �� ��������� ���� ��� ������

������

�������� (&i, & j, masterRank);
for k ← 0 to �����������-1 do

������������������� ← ������������������ (������������������,
�������������������, ���������������������, ����������������� (i),
������������������ (j), �������������������� (k));

����������������� ← ���� (camFingerprint,�������������������);
������������������� ← ���������������� (�����������������, f rameNoise);
corr ← ��� (�������������������);
if corr > ������� then

������������������ ← ����������������� (i);
������������������� ← ������������������ (j);
��������������������� ← �������������������� (k);
crosscorrMatrix ← �������������������;
������� ← corr;

end
end
�� ������� ������� �� ����������� �� ��� ������ ������

�������� (������������������, �������������������, ���������������������,
masterRank);
�������� (�������, masterRank);

end
Algorithm 5. Slave thread algorithm

52

After estimating the affine transform matrix of each frame noise, the warped frames noise

have to be aggregated to form the stabilized video’s query noise. The next Subsection de-

scribes our proposed scheme for warped frames noise aggregation.

3.2.3 Warped frames noise aggregation

The last step to form a stabilized video noise is the aggregation of warped frames noise. This

process is done on the basis of warped frames noise and the locations of peaks in normalized

cross-correlation matrices between the reference fingerprint and warped frames noise. Figure

3.11 gives an example of NCC between a reference fingerprint and a registered frame (for

a correctly estimated affine transform). The location of the peak in the NCC matrix defines

Figure 3.11. Peak in the NCC between a reference fingerprint and a registered frame noise

from where (row and column) the warped frame noise should be cropped. After cropping

each warped frame noise, its mask matrix is built, a mask matrix has 0 as values where there

are undefined pixels in the cropped frame noise and 1 else where. The mask matrices are

used the average the cropped frames noise. The code snippet given in Listing 3.1 gives the

Matlab code of the function performing warped frames noise aggregation. In this chapter,

we have presented novel methods to perform source device attribution for non-stabilized and

53

Input arguments: camFingerprint : f rameHeight × f rameWidth ,
warpedFramesNoise : f rameHeight × f rameWidth × nberFrames

Returned values : videoPRNUnoise

������������ ← ���������������� (f rameHeight, f rameWidth, nberFrames);
������������������ ← ���������������� (f rameHeight, f rameWidth, nberFrames);
for i ← 0 to nberFrames do

normCx ← ���������� (normCx, warpedFramesNoise[][][i], videoPRNUnoise);
���������������� (normCx, &xPeak, &yPeak);
if (xPeak >= f rameWidth) && (yPeak >= f rameHeight) then

xCrop ← xPeak - f rameWidth + 1;
yCrop ← yPeak - f rameHeigth + 1;
croppedFramesNoise[yCrop : f rameHeight][xCrop : f rameWidth][i]←
warpedFramesNoise[1 : f rameHeight−yCrop+1][1 : f rameWidth−xCrop+1][i]
;

end
if (xPeak < f rameWidth) && (yPeak > f rameHeight) then

xCrop ← f rameWidth - xPeak + 1;
yCrop ← yPeak - f rameHeigth + 1;
croppedFramesNoise[yCrop : f rameHeight][1 : f rameWidth− xCrop+1][i]←
warpedFramesNoise[1 : f rameHeight − yCrop+1][xCrop : f rameWidth][i] ;

end
if (xPeak > f rameWidth) && (yPeak < f rameHeigth) then

xCrop ← xPeak - f rameWidth + 1;
yCrop ← f rameHeigth - yPeak + 1;
croppedFramesNoise[1 : f rameHeight − yCrop+1][xCrop : f rameWidth][i]←
warpedFramesNoise[yCrop : f rameHeight +1][1 : f rameWidth− xCrop+1][i] ;

end
if (xPeak < f rameWidth) && (yPeak < f rameHeigth) then

xCrop ← f rameWidth - xPeak + 1;
yCrop ← f rameHeigth - yPeak + 1;
croppedFramesNoise[1 : f rameHeight − yCrop+1][1 : f rameWidth− xCrop+
1][i]← warpedFramesNoise[yCrop : f rameHeight][xCrop : f rameWidth][i] ;

end
�� �������� ���� ����� �� ������� ��������� ������

maskMatrices[][][i]←�������������� (croppedFramesNoise[][][i]);
end
�� �������� ��� ������ ���� �� ������� ������� ������ �����

weightMatrix ← ������������������������ (maskMatrices);
videoPRNUnoise ← ������������������������� (croppedFramesNoise,
weightMatrix);

Algorithm 6. Registered frames noise aggregation algorithm

54

stabilized videos. These methods have been tested on a large dataset of videos; the results we

obtained are presented in the next chapter.

55

4. RESULTS

In this Chapter, we present the experimental results of our approaches to source device at-

tribution for digital videos. We first present the VISION video set which was used in our

experiments, then, we present the results of proposed schemes on non-stabilized and stabi-

lized videos.

4.1 The VISION dataset

4.1.1 VISION dataset overview

The VISION dataset is a set of images and videos built by Dasara et al. (2017) with the aim of

proposing to the community of forensics scientists a large dataset of images and videos which

can be used to test source device attribution methods for images and videos. The dataset is a

collection of 34 427 images and 1914 videos in their native and social media-shared versions

(YouTube and Whatsapp for videos and Facebook for images). Images and videos have been

acquired with 35 smartphones and tablets from 11 major brands ranging from low to high

price. Figure 4.1 gives the organization of folders associated to each device in the database.

Images and videos may contain three type of scenes: flat scenes (skies or flat wall), indoor

scenes (classrooms, offices, halls, stores...), and outdoor scenes (nature, garden, city); in this

study, we will refer to indoor and outdoor content as natural content. Videos were acquired

using three acquisition modes: the still mode where the user stands still while capturing the

video; the move mode where he walks while capturing the scene and the pan mode where

he performs a pan and rotation while acquiring the scene. All the videos in the dataset have

approximately the same duration of about 1 minute and 15 seconds.

56

Figure 4.1. Architecture of the VISION dataset (Dasara et al. 2017)

Table 4.1. The set of native videos used in our experiments

ID Brand Resolution Container H.264 Profile Digital Stab #flat #natural total

D01 Samsung Galaxy S3 Mini 720p MP4 Baseline Off 10 12 22
D03 Huawei P9 1080p MP4 Constrained Baseline Off 7 12 19
D07 Lenovo P70A 720p 3GP Baseline Off 7 13 20
D08 Samsung Galaxy Tab3 720p MP4 Constrained Baseline Off 13 24 37
D09 Apple iPhone4 720p MOV Baseline Off 7 12 19
D11 Samsung GalaxyS3 1080p MP4 Baseline Off 7 12 19
D13 Apple iPad2 720p MOV Baseline Off 4 12 16
D16 Huawei P9Lite 1080p MP4 Constrained Baseline Off 7 12 19
D17 Microsoft Lumia640LTE 1080p MP4 Main Off 4 6 10
D21 Wiko Ridge4G 1080p MP4 Baseline Off 4 7 11
D22 Samsung GalaxyTrendPlus 720p MP4 Baseline Off 4 12 16
D24 Xiaomi RedmiNote3 1080p MP4 Baseline Off 7 12 19
D26 Samsung GalaxyS3Mini 720p MP4 Baseline Off 4 12 16
D27 Samsung GalaxyS5 1080p MP4 High Off 7 12 19
D28 Huawei P8 1080p MP4 Constrained Baseline Off 7 12 19
D30 Huawei Honor5c 1080p MP4 Constrained Baseline Off 7 12 19
D31 Samsung Galaxy S4Mini 1080p MP4 High Off 7 12 19
D33 Huawei Ascend 720p MP4 Constrained Baseline Off 7 12 19
D35 Samsung Galaxy TabA 720p MP4 Baseline Off 4 12 16
D15 iPhone6 1080p MOV High On 1 1 2
Total 125 231 356

4.1.2 Properties of videos used in our experiments

Table 4.1 gives the list of devices and the set of native videos used in our experiments; a

total of 20 devices were used. Considering their native and YouTube versions, a total of 710

57

videos have been used in our experiments. Among these 710 videos, 249 are flat content,

and, 461 are natural content videos. Tables 4.2 and 4.3 give properties of native and YouTube

videos respectively. YouTube re-encodes (re-compresses) uploaded videos in order to reduce

the space needed to store them. In order to reduce the size of uploaded videos, YouTube’s

compression algorithms perform a better prediction and a coarser quantization of Macroblock

residues’ DCT coefficients. YouTube re-encodes 720p videos using the H.264 Main profile

meanwhile 1080p videos are re-encoded using the High profile which has a higher coding

efficiency.

Table 4.2. Properties of native videos ([minimum average maximum])

ID Res Container #Frames #I frames #P frames #B frames bitrate (Kbps)

D01 720p MP4 [2002 2112 2206] [67 71 74] [1935 2041 2132] [0 0 0] [1558 3341 5060]
D03 1080p MP4 [2112 2163 2327] [69 70 76] [2043 2093 2251] [0 0 0] [11907 16567 17067]
D07 720p 3GP [1619 2125 2218] [54 71 74] [1565 2054 2144] [0 0 0] [4693 8212 9017]
D08 720p MP4 [1576 1912 2132] [53 64 72] [1523 1847 2060] [0 0 0] [9593 11459 11882]
D09 720p MOV [1576 2027 2291] [12 46 77] [581 1567 2214] [0 414 1369] [1758 6877 10640]
D11 1080p MP4 [2146 2187 2320] [72 73 78] [2074 2114 2242] [0 0 0] [1644 27466 81620]
D13 720p MOV [2010 2133 2207] [14 62 74] [716 1872 2133] [0 198 1421] [4326 9407 10737]
D16 1080p MP4 [2124 2155 2254] [69 70 73] [2055 2085 2181] [0 0 0] [10003 16110 17151]
D17 1080p MP4 [2110 2138 2239] [13 47 77] [679 879 1510] [696 1211 1400] [1699 11056 17692]
D21 1080p MP4 [1393 2032 2477] [47 68 83] [1346 1963 2394] [0 0 0] [19963 20004 20040]
D22 720p MP4 [2114 2174 2407] [71 73 81] [2043 2101 2326] [0 0 0] [12012 12025 12105]
D24 1080p MP4 [1426 2031 2192] [48 68 74] [1378 1963 2118] [0 0 0] [19964 19994 20012]
D26 720p MP4 [2080 2161 2253] [13 64 76] [1015 1931 2177] [0 167 1080] [4109 10901 12166]
D27 1080p MP4 [763 2088 2282] [26 70 77] [737 2017 2205] [0 0 0] [16990 17010 17075]
D28 1080p MP4 [2068 2152 2296] [67 70 75] [2001 2082 2221] [0 0 0] [15812 15942 15973]
D30 1080p MP4 [2075 2162 2327] [67 70 76] [2008 2092 2251] [0 0 0] [17078 17096 17116]
D31 1080p MP4 [2169 2198 2274] [73 74 76] [2008 2092 2251] [0 0 0] [16977 17005 17018]
D33 720p MP4 [1765 2022 2141] [59 68 72] [1706 1954 2069] [0 0 0] [7794 8032 8154]
D35 720p MP4 [2099 2150 2208] [13 66 74] [779 1939 2134] [0 145 1307] [2137 10903 12009]
D15 1080p MOV [1875 1906 1937] [63 64 65] [1812 1842 1872] [0 0 0] [15486 15494 15503]

4.2 Source device attribution for non-stabilized videos

Here, we consider the case on non-stabilized videos, three scenarios will be studied: the case

where we perform source attribution on native videos (by native video we mean a video which

has not been through any processing after its acquisition), the case where we perform source

device attribution between native videos and video downloaded from YouTube, and, finally,

the case where both videos are downloaded from YouTube. For each of these scenarios, the

58

Table 4.3. Properties of YouTube videos ([minimum average maximum])

ID Res Container #Frames #I frames #P frames #B frames bitrate (Kbps) Profile

D01 720p MP4 [2002 2113 2189] [13 22 56] [690 1366 2074] [0 726 1422] [546 1741 2319] Main
D03 1080p MP4 [2111 2161 2325] [14 52 150] [735 1520 2054] [1 589 1414] [1558 3341 5060] High
D07 720p MP4 [2083 2153 2218] [14 42 172] [713 1307 2081] [0 803 1401] [501 1401 2468] Main
D08 720p MP4 [1576 1920 2132] [12 31 137] [581 1216 1914] [17 674 1369] [707 1923 2708] Main
D09 720p MP4 [1997 2115 2291] [13 50 123] [747 1675 2024] [0 390 1324] [160 1582 2717] Main
D11 1080p MP4 [2146 2187 2320] [14 22 63] [716 1177 2123] [54 988 1421] [2026 3332 4346] High
D13 720p MP4 [2010 2128 2207] [13 35 166] [742 1416 2029] [0 677 1383] [1026 1906 2317] Main
D16 1080p MP4 [2110 2141 2239] [13 49 211] [722 1508 2092] [0 584 1400] [1426 3176 5080] High
D17 1080p MP4 [2110 2125 2136] [13 53 132] [704 1411 1963] [99 661 1393] [2182 3654 5090] High
D21 1080p MP4 [1970 2174 2508] [13 97 619] [754 1511 2019] [0 565 1299] [1058 3050 5006] High
D22 720p MP4 [2112 2172 2404] [14 27 80] [707 1415 2105] [0 730 1526] [1115 1997 2428] Main
D24 1080p MP4 [1426 2029 2191] [13 39 152] [719 1228 2006] [0 763 1388] [1276 3228 5104] High
D26 720p MP4 [2080 2156 2236] [14 24 81] [717 1421 2143] [0 712 1422] [837 1973 2325] Main
D27 1080p MP4 [763 2088 2282] [9 46 141] [710 1429 2168] [0 613 1417] [1533 3210 5031] High
D28 1080p MP4 [2068 2152 2296] [13 21 72] [701 1288 2057] [42 843 1385] [1617 3835 5075] High
D30 1080p MP4 [2064 2151 2315] [13 34 127] [710 1339 2078] [19 779 1417] [1688 3608 5040] High
D31 1080p MP4 [2168 2198 2274] [14 31 128] [721 1296 2139] [3 871 1440] [1932 3668 4354] High
D33 720p MP4 [1766 2080 2212] [13 20 42] [657 1568 2080] [5 492 1307] [700 1988 2422] Main
D35 720p MP4 [2107 2155 2207] [14 29 165] [710 1359 2111] [0 767 1444] [699 1876 2321] Main

four cases described in Table 3.1 are evaluated. For each device, the sets of matching and non-

matching videos do not have the same size since we have much more non-matching videos

than matching videos; Table 4.4 gives the number of matching and non-matching videos for

each device. The results are given separately for 720p and 1080p videos.

4.2.1 Source device attribution for native videos

Table 4.5 gives the AUC (Area Under Curve) values for all 720p videos in our dataset, and,

Table 4.6 for 1080p videos. Two cases are presented: the case where native-flat-content

videos are matched with native-natural-content videos, and, the case where native-natural-

content videos are matched with native-natural-content videos. PCE values statistic distribu-

tions are given in box plots (in blue for matching videos and in red for non-matching videos).

In each of the box plots, the circle represent the statistical distribution’s median value. The

boxes’ bottom and top edges represent respectively the 25th and 75th percentiles’ of the

distribution. The whiskers represent the minimum and maximum values of the statistical

distribution. Incomplete boxes (without a whisker at the bottom) correspond to distribution

in which the minimum values are negative and thus cannot be represented on a Log scale.

59

Table 4.4. Number of correlation for matching and non-matching videos for each device

Device #Matching correlations #Non-matching correlations

D01 120 2180
D03 84 1526
D07 91 1519
D08 312 2678
D09 84 1526
D11 84 1526
D13 48 872
D16 84 1526
D17 24 896
D21 28 892
D22 48 872
D24 84 1526
D26 48 872
D27 84 1526
D28 84 1526
D30 84 1526
D31 84 1526
D33 84 1526
D35 48 872
Total 1607 26913

Table 4.5. AUC values of 720p native videos matched to native videos

Case NativeFlat-NativeNatural NativeNatural-NativeNatural

FB_C1 1.00 1.00
FB_C2 1.00 0.99
FB_C3 1.00 0.99
FB_C4 1.00 0.99
BB 1.00 1.00

Figure 4.2 gives PCE values’ statistic distributions of 720p native videos and Figure 4.3 the

ones of 1080p videos. These figures and tables show that high accuracies are obtained on

native videos using frame-based or block-based approaches. Nevertheless, the block-based

approach is the one having the best discriminative capabilities.

60

Table 4.6. AUC values of 1080p native videos matched to native videos

Case NativeFlat-NativeNatural NativeNatural-NativeNatural

FB_C1 1.00 1.00
FB_C2 1.00 1.00
FB_C3 1.00 1.00
FB_C4 1.00 0.99
BB 1.00 1.00

4.2.2 Source device attribution for YouTube videos with fingerprints estimated from
the native videos

Here, we consider the case where we want to perform source device attribution for videos

downloaded from YouTube. Query videos are YouTube videos and videos used to estimate

camera fingerprints are native videos (with flat or natural content). Table 4.7 and Table 4.8

give the overall accuracy for 720p and 1080p videos respectively. Figure 4.4 and Figure

4.5 gives the PCE distributions. Globally, we obtain high accuracies and, highest accuracies

are achieved when fingerprints are estimated from flat-content native videos. Figure 4.6 and

Figure 4.7 gives ROC curves obtained. These ROC curves show that, for the frame-based

approach, the best accuracy is obtained for C2 (fingerprints estimated from I frames of native

videos and query videos’ noise estimated from all YouTube videos’ frames). The block-

based approach brings a great improvement to the accuracy and gives an accuracy of 100%

on 1080p videos. Table 4.9 and Table 4.10 give the AUC values for each device.

Table 4.7. AUC values of 720p native videos matched to YouTube videos

Case NativeFlat-YoutubeNatural NativeNatural-YoutubeNatural

FB_C1 0.99 0.97
FB_C2 0.99 0.99
FB_C3 1.00 0.98
FB_C4 0.99 0.98
BB 1.00 0.99

61

FB_C1 FB_C2 FB_C3 FB_C4 BB
10 -20

10 -15

10 -10

10 -5

10 0

10 5

10 10

lo
g
(P

C
E

)

(a) Native flat - Native natural

FB_C1 FB_C2 FB_C3 FB_C4 BB
10 -20

10 -15

10 -10

10 -5

10 0

10 5

10 10

lo
g

(P
C

E
)

(b) Native natural - Native natural

Figure 4.2. PCE distributions of 720p native videos matched to native videos

4.2.3 Source device attribution for YouTube videos with reference fingerprints esti-
mated from YouTube videos

Finally, we consider the case where we desire to link YouTube videos. This represents the

most difficult case since camera fingerprints and query videos’ noise have to be estimated

62

FB_C1 FB_C2 FB_C3 FB_C4 BB
10 -20

10 -15

10 -10

10 -5

10 0

10 5

10 10

lo
g
(P

C
E

)

(a) Native flat - Native natural

FB_C1 FB_C2 FB_C3 FB_C4 BB
10 -20

10 -15

10 -10

10 -5

10 0

10 5

10 10

lo
g
(P

C
E

)

(b) Native natural - Native natural

Figure 4.3. PCE distributions of 1080p native videos matched to native videos

from highly compressed YouTube videos. Table 4.11 and Table 4.12 give the overall accuracy

for 720p and 1080p videos respectively; Figure 4.8 and Figure 4.9 give PCE values’ statistic

distributions; matching and non-matching distributions are no more separable. Figure 4.10

and Figure 4.11 give ROC curves obtained, and, AUC for each device are given by Table 4.13

and Table 4.14.

63

Table 4.8. AUC values of 1080p native videos matched to YouTube videos

Case NativeFlat-YoutubeNatural NativeNatural-YoutubeNatural

FB_C1 0.99 0.94
FB_C2 0.99 0.98
FB_C3 0.99 0.96
FB_C4 0.99 0.98
BB 1.00 1.00

Table 4.9. AUC for each device when matching 720p native videos to YouTube videos

Device ID Native flat - YouTube natural Native natural - YouTube natural
C1 C2 C3 C4 BB C1 C2 C3 C4 BB

D01 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
D07 0.99 0.98 1.00 0.99 1.00 0.83 0.93 0.90 0.92 0.98
D08 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
D09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D26 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
D33 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00
D35 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.99 1.00

Table 4.10. AUC values for each device when matching 1080p native videos to YouTube
videos

Device ID Native flat - YouTube natural Native natural - YouTube natural
C1 C2 C3 C4 BB C1 C2 C3 C4 BB

D03 0.98 1.00 1.00 1.00 1.00 0.95 0.99 0.96 0.99 1.00
D11 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
D16 0.96 1.00 0.98 1.00 1.00 0.89 0.98 0.94 0.99 1.00
D17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D21 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.98 1.00
D24 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00
D27 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.98 1.00
D28 0.99 1.00 1.00 1.00 1.00 0.90 0.97 0.94 0.97 1.00
D30 0.98 1.00 0.99 1.00 1.00 0.88 0.98 0.93 0.97 1.00
D31 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00

64

FB_C1 FB_C2 FB_C3 FB_C4 BB
10 -20

10 -15

10 -10

10 -5

10 0

10 5

lo
g
(P

C
E

)

(a) Native flat - YouTube natural

FB_C1 FB_C2 FB_C3 FB_C4 BB
10 -20

10 -15

10 -10

10 -5

10 0

10 5

10 10

lo
g
(P

C
E

)

(b) Native natural - YouTube natural

Figure 4.4. PCE distributions of 720p native videos matched to YouTube videos

Figure 4.10 and Figure 4.11 show that:

• when matching flat-content-YouTube videos to natural-content-YouTube videos, per-

formances obtained with C2 and C4 are almost equivalent. This is explained by the

fact that inter-frame prediction replaces the PRNU noise in inter-predicted frames (P

65

FB_C1 FB_C2 FB_C3 FB_C4 BB
10 -20

10 -15

10 -10

10 -5

10 0

10 5

lo
g
(P

C
E

)

(a) Native flat - YouTube natural

FB_C1 FB_C2 FB_C3 FB_C4 BB

10 -15

10 -10

10 -5

10 0

10 5

lo
g
(P

C
E

)

(b) Native natural - YouTube natural

Figure 4.5. PCE distributions of 1080p native videos matched to YouTube videos

or B) frames by the one in I frames because of the steadiness of scenes (leading to pre-

diction residue having only DC component). If we consider a GOP, the PRNU noise in

P (and B) frames is redundant to the PRNU noise in the I frame at the beginning of the

GOP. As result, the fingerprint estimated from I frames is almost equivalent to the one

66

10 -3 10 -2 10 -1 10 0

FP

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

T
P

FB_C1

FB_C2

FB_C3

FB_C4

BB

(a) Native flat - YouTube natural

10 -3 10 -2 10 -1 10 0

FP

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
P

FB_C1

FB_C2

FB_C3

FB_C4

BB

(b) Native natural - YouTube natural

Figure 4.6. ROC curves of 720p native videos matched to YouTube videos

estimated from all the frames of the video.

• when matching natural-content-YouTube videos to natural-content-YouTube videos,

67

10 -3 10 -2 10 -1 10 0

FP

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

T
P

FB_C1

FB_C2

FB_C3

FB_C4

BB

(a) Native flat - YouTube natural

10 -3 10 -2 10 -1 10 0

FP

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
P

FB_C1

FB_C2

FB_C3

FB_C4

BB

(b) Native natural - YouTube natural

Figure 4.7. ROC curves of 1080p native videos matched to YouTube videos

the best performance (which is really poor) for the frame-based approach is obtained

with C4 (C2 and C3 are almost equivalent). This means that, for natural scenes, there

68

Table 4.11. AUC values of 720p YouTube videos matched to YouTube videos

Case YoutubeFlat-YoutubeNatural YoutubeNatural-YoutubeNatural

FB_C1 0.90 0.78
FB_C2 0.95 0.88
FB_C3 0.94 0.87
FB_C4 0.95 0.90
BB 0.96 0.97

Table 4.12. AUC values of 1080p YouTube videos matched to YouTube videos

Case YoutubeFlat-YoutubeNatural YoutubeNatural-YoutubeNatural
FB_C1 0.86 0.69
FB_C2 0.91 0.79
FB_C3 0.89 0.79
FB_C4 0.90 0.83
BB 0.98 0.98

Table 4.13. AUC values for each device when linking 720p YouTube videos

Device ID YouTube flat - YouTube natural YouTube natural - YouTube natural
C1 C2 C3 C4 BB C1 C2 C3 C4 BB

D01 0.92 1.00 0.97 0.99 1.00 0.75 0.88 0.90 0.92 1.00
D07 0.71 0.77 0.75 0.79 0.74 0.62 0.64 0.64 0.69 0.82
D08 1.00 1.00 1.00 0.99 1.00 0.84 0.95 0.94 0.96 1.00
D09 1.00 0.99 1.00 0.99 1.00 0.96 0.96 0.96 0.95 0.98
D13 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00
D22 0.96 0.99 0.99 0.98 1.00 0.81 0.94 0.93 0.97 1.00
D26 0.93 0.98 0.98 0.98 1.00 0.74 0.93 0.93 0.98 1.00
D33 0.88 0.98 0.98 0.99 1.00 0.68 0.89 0.88 0.94 1.00
D35 0.88 0.98 0.95 0.96 1.00 0.75 0.77 0.77 0.76 0.97

is still PRNU noise in P (and B) frames and they contribute to estimate a better PRNU

video noise compared to the case where only I frames are used (C1). Again, the block-

based approach brings a great improvement to the accuracy particularly for 1080p

videos.

On the basis of all the results presented in this section, we can take the following conclusions

69

FB_C1 FB_C2 FB_C3 FB_C4 BB

10 -15

10 -10

10 -5

10 0

10 5

lo
g
(P

C
E

)

(a) YouTube flat - YouTube natural

FB_C1 FB_C2 FB_C3 FB_C4 BB

10 -15

10 -10

10 -5

10 0

lo
g
(P

C
E

)

(b) YouTube natural - YouTube natural

Figure 4.8. PCE distributions of 720p YouTube videos matched to YouTube videos

concerning the type of frames which should be used to achieve the best accuracy with the

least computing time when performing device source attribution for H.264/AVC videos :

• If we are to perform source device attribution for native videos (source identification

70

FB_C1 FB_C2 FB_C3 FB_C4 BB

10 -15

10 -10

10 -5

10 0

10 5

lo
g

(P
C

E
)

(a) YouTube flat - YouTube natural

FB_C1 FB_C2 FB_C3 FB_C4 BB

10 -15

10 -10

10 -5

10 0

lo
g
(P

C
E

)

(b) YouTube natural - YouTube natural

Figure 4.9. PCE distributions of 1080p YouTube videos matched to YouTube videos

and device linking), using I frames only with the frame based approach for camera

fingerprints and query video noise estimation achieves a high accuracy with the least

71

10 -3 10 -2 10 -1 10 0

FP

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
1

TP

FB_C1
FB_C2
FB_C3
FB_C4
BB

(a) YouTube flat - YouTube natural

10 -3 10 -2 10 -1 10 0

FP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P

FB_C1

FB_C2

FB_C3

FB_C4

BB

(b) YouTube natural - YouTube natural

Figure 4.10. ROC curves of 720p YouTube videos matched to YouTube videos

computing time.

• When we are to match YouTube videos to native videos, using I frames to estimate fin-

gerprint/noise from native videos and all the frames of query YouTube videos achieves

72

10 -3 10 -2 10 -1 10 0

FP

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P

FB_C1

FB_C2

FB_C3

FB_C4

BB

(a) YouTube flat - YouTube natural

10 -3 10 -2 10 -1 10 0

FP

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P

FB_C1

FB_C2

FB_C3

FB_C4

BB

(b) YouTube natural - YouTube natural

Figure 4.11. ROC curves of 1080p native videos matched to YouTube videos

73

Table 4.14. AUC values for each device when linking 1080p YouTube videos

Device ID YouTube flat - YouTube natural YouTube natural - YouTube natural
C1 C2 C3 C4 BB C1 C2 C3 C4 BB

D03 0.88 0.94 0.88 0.93 0.94 0.62 0.79 0.79 0.83 0.99
D11 0.95 0.95 0.98 0.94 1.00 0.86 0.93 0.92 0.91 1.00
D16 0.85 0.97 0.85 0.95 0.96 0.67 0.76 0.74 0.79 0.98
D17 1.00 1.00 1.00 0.99 1.00 0.93 0.95 0.94 0.95 1.00
D21 0.96 0.98 0.95 0.88 1.00 0.80 0.88 0.88 0.87 1.00
D24 0.95 0.97 0.91 0.93 1.00 0.77 0.87 0.89 0.93 1.00
D27 0.92 0.94 0.97 0.91 0.98 0.70 0.78 0.79 0.83 1.00
D28 0.68 0.80 0.85 0.85 1.00 0.54 0.69 0.68 0.76 0.97
D30 0.66 0.76 0.76 0.72 0.96 0.56 0.69 0.68 0.72 0.95
D31 0.95 0.97 0.94 0.96 1.00 0.75 0.85 0.84 0.91 1.00

the best accuracy of the frame-based approach. As previously, the block-based ap-

proach gives the highest accuracy.

• If we are to link YouTube videos, using all frames will achieve the best accuracy of

the block-based approach. Compared to the frame-based approach, the block-based

approach is much more effective and brings a great improvement to the classification

accuracy.

4.3 Source device attribution for digitally stabilized videos

For digitally stabilized videos, we consider three cases: the case where video stabilization

is performed inside the camera, the case where video stabilization is performed outside the

camera using FFmpeg, and, the case where video stabilization is performed outside the cam-

era using YouTube Stabilizer (Grundmann et al. 2011). Because of the huge computing time

requested by our methods, we will test each case using only one test video: A video from

D15 (an exemplar of iPhone6) for the first case and one video from D03 (Huawei P9) for the

last two cases. The video frames noise registration process is run on a cluster of computers

which properties are given in Table 4.15. Table 4.16 gives the time it takes to register one

74

frame’s noise according to its resolution.

Table 4.15. Properties of computers in the cluster used for frames noise registration

Property Value

Number of computers 30
CPU Intel Core i7-6700, 3.40GHz × 8
RAM 16 GB
OS Ubunutu 16.04 LTS
MPI runtime Open MPI 1.10.2

Table 4.16. Processing time for the registration of the PRNU noise in one frame

Resolution Computing time

720p ≈ 20 min
1080p ≈ 45 min

4.3.1 Source device identification for in-camera-stabilized videos

Here we consider the case where the suspect camera features digital video stabilization; in

this case, camera fingerprint is obtained by scaling and cropping an image-based fingerprint

as described in Section 2.1.3. Figure 4.12 gives the maximum PCE values obtained when

matching a fingerprint estimated from 65 flat content images (acquired with the same exem-

plar of iPhone) with the PRNU noise of I frames from a flat content video (acquired with the

same exemplar) acquired in still conditions. The best matched fingerprint corresponds to the

one which gave the highest PCE value (which corresponds to the 34th I frame). Once a good

camera fingerprint is obtained, it can be used to match a test video. The test video used in our

experiment has been acquired in outdoor conditions with the user walking while capturing

the video (D15_V_outdoor_move_0002.mov). The scheme proposed in Section 3.2.2 is then

used to estimate affine transforms that register each of the first 25 I frames of the test video

to the camera fingerprint. To check the efficiency of our affine transform estimation scheme,

we give in Figure 4.13 PCE values of cross-correlations between the camera fingerprint and

75

0 10 20 30 40 50 60 70
I frame index

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

M
ax

im
um

 P
C

E
va

lu
es

Figure 4.12. PCE values obtained when matching an image-based fingerprint to the PRNU
noise extracted from I frames of a flat-content stabilized video (iPhone6)

non-registered frames noise and, cross-correlations between the camera fingerprint and reg-

istered frames noise. Figure 4.13 shows that our scheme registers frames noise in most cases.

0 5 10 15 20 25

I frame index

-50

0

50

100

150

200

250

300

P
C

E
 v

a
lu

e
s

Registered frames

Non-registered frames

Figure 4.13. PCE values of non-registered and registered PRNU frames noise

Cases where high PCE values have not been obtained correspond to frames warped above the

40×40 pixels grid used as search space in our affine transform estimation scheme. For these

76

frames, the maximum peak values in normalized-cross-correlation matrices are not located in

the vicinity of NCC matrices central points. For a correctly estimated affine transform matrix,

the maximum peak value in the NCC matrix is located in a 40×40 square centered at the mid-

dle of the NCC matrix. Figure 4.14 illustrates this, it gives the NCC matrices for a correctly

and a wrongly estimated matrix. Wrongly registered frames noise are eliminated during the

registered frames noise aggregation process. Figure 4.15 gives the cross-correlation matrix

(a) Wrongly estimated affine transform

Peak

(b) Correctly estimated affine transform

Figure 4.14. NCC corresponding to wrongly and correctly estimated affine transform

between the camera fingerprint and the video noise obtained by averaging non-registered

frames, and, the cross-correlation matrix between the camera fingerprint and the video noise

obtained after the aggregation of registered frames noise. Table 4.17 gives numerical results

of the source device attribution process on the iPhone6 test video. Table 4.17 shows how

Table 4.17. iPhone6 test video results

Before registration After registration

Maximum Correlation 762.88 7.45x103

PCE Value 0.015 1.73x103

efficient has been the registration process, we can see that from a PCE of 0.015 we could

obtain after registration a PCE value of 1.73x103.

77

(a) Cross-correlation before registration (b) Cross-correlation after registration

Figure 4.15. Cross-correlation before and after frame noise registration (iPhone6 test video)

4.3.2 Source device identification for videos stabilized with FFmpeg

Here, we consider the case where video stabilization is performed outside the camera, the

tool deshake of FFmpeg is used to stabilize the test video. The reference camera fingerprint

is estimated from all the I frames of a flat content video. The test video is a shaky outdoor

video. Table 4.18 gives the main properties of the video used for fingerprint estimation and

the stabilized test video. Figure 4.16 gives the PCE values of non-registered and registered

Table 4.18. Properties of fingerprint and test videos used in the FFmpeg experiment

Property flat-content video Stabilized test video

File D03_V_flat_still_0002.mp4 D03_V_outdoor_move_0002.mp4
Resolution 1080p 1080p
I frames 69 10

frames noise. Figure 4.17 gives the cross-correlation matrix between the camera fingerprint

and the video noise from non registered frames noise, and, the cross-correlation matrix be-

tween the camera fingerprint and the video noise from registered frames noise. Numerical

results are given by Table 4.19. Here again our frame noise registration scheme works pretty

well and improve the PCE of all the 10 I frames. Compared to the previous case, we obtain

a smaller PCE value, this is due to the limited number of I frames in the test video and also

78

0 1 2 3 4 5 6 7 8 9 10

I frame index

-15

-10

-5

0

5

10

15

20

25

P
C

E
 v

a
lu

e
s

Registered frames

Non-registered frames

Figure 4.16. PCE of non-registered and registered frames noise (video stabilized with FFm-
peg)

Table 4.19. FFmpeg-deshake test video results

Before registration After registration

Maximum Correlation 240.06 461.72
PCE Value -9.37 72.28

(a) Cross-correlation before registration (b) Cross-correlation after registration

Figure 4.17. Cross-correlation before and after frame noise registration (FFmpeg-deshake
test video)

79

because FFmpeg re-encodes the video after stabilization.

4.3.3 Source device identification for videos stabilized with YouTube stabilizer

Finally, we consider the case where the query video has been stabilized using YouTube Stabi-

lizer which is a module of YouTube studio. YouTube stabilizer uses the algorithm described

in (Grundmann et al. 2011). This case presents two level of difficulties: the destruction of the

PRNU due to an aggressive compression, and, the frames noise misalignment due to video

stabilization. The same query video used in the previous experiment is uploaded to YouTube,

stabilized with YouTube stabilizer, and, downloaded. Table 4.20 gives the properties of the

flat-content video used to estimate the camera fingerprint, and, the properties of the test video.

YouTube downscales the resolution of the stabilized video from 1080p to 720p, thus, the ref-

erence fingerprint is also scaled to this resolution using the nearest neighbor interpolation.

Figure 4.18 gives PCE values of registered and non registered frames noise. Figure 4.19

gives plots of cross-correlation matrices before and after frames noise registration. Numeri-

cal results on the YouTube-stabilized query video are given in Table 4.21.

Table 4.20. Properties of fingerprint and test videos used in the Youtube-Stabilizer
experiment

Property flat-content video Stabilized test video

File D03_V_flat_still_0002.mp4 D03_V_outdoor_move_0002.mp4
Resolution 1080p 720p
I frames 69 37

Table 4.21. YouTube-stabilized test video results

Before registration After registration

Maximum Correlation 65.01 296.82
PCE Value 1.17 231.27

Results presented in this section show the effectiveness of our proposed scheme for source de-

80

0 5 10 15 20 25 30 35

I frame index

-10

0

10

20

30

40

50

P
C

E
 v

a
lu

e
s

Registered frames

Non-registered frames

Figure 4.18. PCE of non-registered and registered frames noise (video stabilized with
YouTube Stabilizer)

(a) Cross-correlation before registration (b) Cross-correlation after registration

Figure 4.19. Cross-correlation before and after frame noise registration (YouTube-stabilized
test video)

vice attribution of digitally stabilized videos. Through the three cases experimented, we prove

that our proposed scheme can efficiently estimate geometric transforms applied to frames of

a digitally stabilized video and aggregate the PRNU noise from registered frames even when

the query video has been highly compressed.

In this chapter, we presented experimental results obtained using our proposed methods for

81

source device attribution. A large set of non-stabilized videos was used to determine the set

of frames which should be used to achieve the best accuracy with the least computing time.

Concerning our scheme for digitally-stabilized videos, we prove its effectiveness by testing

it in three conditions: the case where the stabilization is performed inside the camera, the

case where stabilization is performed using FFmpeg and, the case where YouTube Stabilizer

is used (which implies re-compression and stabilization).

82

5. DISCUSSION AND CONCLUSION

In this research work, we focused on source device attribution for digital videos. On the

basis of well established PRNU-based state of the art techniques for source device attribution

of digital images, we propose novel schemes to perform source device attribution for digital

videos.

In the first part of our research, we studied the effects of video compression on the PRNU

noise in video frames. It comes out that operations involved in video compression (prediction,

transform and quantization) can destroy the PRNU noise in encoded frame block (the PRNU

noise in the encoded block is replaced by the one in its prediction block(s)). This happens

when the DCT transform of the block’s prediction residue has no AC component; in this case,

the PRNU noise in the encoded block is replaced by the one in its prediction block(s).

Knowing the effect that video compression has on PRNU noise in video frames, we propose

two approaches to estimate fingerprint and noise from non-stabilized videos: a frame-based

approach and a block-based. The frame-based approach aims to determine the set of frames

which should be used in order to achieve the highest accuracy meanwhile in the block-based

approach, we filter blocks used in fingerprint and noise estimation to use only block in which

there still remaining PRNU noise.

It comes out from our experiment that:

• Using I frames only with the frame-based approach is enough to achieve nearly 100%

of accuracy when performing source device attribution for native videos.

• If we are to match native videos to YouTube videos, an accuracy of nearly 100% is

achieved with the frame-based approach using I frames to estimate fingerprints from

native videos and using all video frames to estimate YouTube videos’ noise.

• When YouTube videos are to be matched, the best accuracy using the frame-based

83

approach (which is really low) is obtained using all the frames in query videos.

• The block-based approach gives high classification accuracies even when linking highly

compressed YouTube videos.

• The results given here represent the lower bound since more videos can be combined

to estimate a better fingerprint.

Digital video stabilization is more and more used in hand-held devices. This camera feature

misaligns the PRNU noise in video frame and makes video noise estimation more compli-

cated. We propose a novel scheme to register the PRNU noise in stabilized video frames to

a fingerprint estimated from still images or video frames. The efficiency of this scheme has

been tested in various conditions and gave satisfying results even when the stabilized video

have been highly compressed.

The research presented in this thesis is far from being complete, but instead, represents the

foundation for future researches. These future researches will focus on :

• Use state-of-the-art techniques such as MACE (Minimum Average Correlation En-

ergy) filter to improve the PRNU fingerprint estimated with the block-based approach

in order to improve the accuracy of the block-based approach when linking highly

compressed videos.

• Use deep learning to remove frames’ high frequency content from the estimated frame

PRNU noise.

• Implement the affine transform estimation algorithm on GPUs in order to accelerate

computations. Since the algorithm computes a lot of cross-correlations which are im-

plemented using FFT, a great speed up could be achieved if these operations are moved

from CPUs to GPUs.

• Test our scheme for source device attribution of digitally stabilized videos on a large

84

set of videos.

All these aspects will be addressed in future researches in our research team.

85

REFERENCES

Adrian ,K., Gary, B. 2017. Learning OpenCV 3: Computer Vision in C++ with the

OpenCV Library. O Reilly Media., USA, 990 pp.

Alexa 2018. Alexa internet. http://www.alexa.com/topsites (10/05/2018).

Bayram, S., H. Sencar, N. Memon, and I. Avcibas. 2005. Source camera identification

based on cfa interpolation. In IEEE International Conference on Image Processing 2005.

BBC 2016. South korea’s hidden camera-hunting squad. http://www.bbc.com/news/blogs-

trending-37911695 (10/05/2018).

Chang, H.-C., S.-H. Lai, and K.-R. Lu. 2006. A robust real-time video stabilization

algorithm. Journal of Visual Communication and Image Representation, 17(3):659 – 673.

Chen, M., J. Fridrich, M. Golja, and J. Lukáš 2007. Source digital camcorder

identification using sensor photo response non-uniformity. In Proceedings of SPIE - The

International Society for Optical Engineering 6505, volume 6505.

Choi, K. S., E. Y. Lam, and K. K. Y. Wong 2006. Feature selection in source camera

identification. In 2006 IEEE International Conference on Systems, Man and Cybernetics,

volume 4, Pp. 3176–3180.

Dasara, S., F. Marco, I. Massimo, S. Omar, and P. Alessandro 2017. Vision: a video

and image dataset for source identification. EURASIP Journal on Information Security,

2017(1):15.

Farid, H. 2006. Digital image ballistics from jpeg quantization.

http://www.ists.dartmouth.edu/library/204.pdf (22/02/2018).

FFmpeg 2018. Ffmpeg. https://www.ffmpeg.org/ (10/01/2018).

86

Filler, T., J. Fridrich, and M. Goljan 2008. Using sensor pattern noise for camera model

identification. In 2008 15th IEEE International Conference on Image Processing, Pp. 1296-

1299.

Fridrich, J. 2009. Digital image forensics. IEEE Signal Processing Magazine, 26(2):26-37.

Goljan, M., M. Chen, and J. Fridrich 2007. Identifying common source digital camera

from image pairs. In 2007 IEEE International Conference on Image Processing, volume 6,

Pp. VI-125-VI -128.

Goljan, M. and J. Fridrich 2008. Camera identification from cropped and scaled images.

In Proceedings of SPIE -The International Society for Optical Engineering.

Goljan, M., J. Fridrich, and T. Filler 2009. Large scale test of sensor fingerprint camera

identification. In Proceedings of SPIE- The International Society for Optical Engineering.

Grundmann, M., V. Kwatra, and I. Essa 2011. Auto-directed video stabilization with

robust l1 optimal camera paths. In CVPR 2011, Pp. 225–232.

Harvey, P. 2018. Exiftool. https://metacpan.org/pod/exiftool (01/03/2018).

Hlmg, L., K. Somasekhar Reddy, and S. 2014. A survey on video stabilization

algorithms.

Houten, W. V. and Z. Geradts 2009. Source video camera identification for multiply

compressed videos originating from YouTube. Digital Investigation.

Hyun, Dai-Kyung, Choi, Chang-Hee, Lee, and Heung-Kyu 2012. Camcorder

identification for heavily compressed low resolution videos. In Computer Science and

Convergence: CSA 2011 & WCC 2011 Proceedings, Pp. 695–701.

Itseez 2017. Open source computer vision library. https://github.com/itseez/opencv.

Iuliani, M., M. Fontani, D. Shullani, and A. Piva 2017. A hybrid approach to video

source identification. CoRR, abs/1705.01854.

87

JVT 2016. jm 16.1 source code. http://iphome.hhi.de/suehring/tml/download/old_jm/

(07/08/2017)

Kurosawa, K., K. Kuroki, and N. Saitoh 1999. Ccd fingerprint method-identification of a

video camera from videotaped images. In Proceedings 1999 International Conference on

Image Processing (Cat. 99CH36348),volume 3, Pp. 537–540 vol.3.

Li, C. T. 2010. Source camera identification using enhanced sensor pattern noise. IEEE

Transac-

tions on Information Forensics and Security, 5(2):280–287.

Lim, A., B. Ramesh, Y. Yang, C. Xiang, Z. Gao, and F. Lin 2017. Real-time optical

flow-based video stabilization for unmanned aerial vehicles. Journal of Real-Time Image

Processing.

Lukas, J., J. Fridrich, and M. Goljan 2005. Determining digital image origin using

sensor imperfections.

Lukas, J., J. Fridrich, and M. Goljan 2006. Digital camera identification from sensor

pattern noise. IEEE Transactions on Information Forensics and Security, 1(2):205–214.

Marpe, D., T. Wiegand, and G. J. Sullivan 2006. The h.264/mpeg4 advanced video

coding standard and its applications. IEEE Communications Magazine, 44(8):134–143.

Matsushita, Y., E. Ofek, W. Ge, X. Tang, and H.-Y. Shum 2006. Full-frame video

stabilization with motion inpainting. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(7):1150–1163.

Mihcak, M. K., I. Kozintsev, and K. Ramchandran 1999. Spatially adaptive statistical

modeling of wavelet image coefficients and its application to denoising. In 1999 IEEE

International Conference on Acoustics, Speech, and Signal Processing. Proceedings.

ICASSP99 (Cat. No.99CH36258), volume 6, Pp. 3253–3256 vol.6.

88

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery 1992. Numerical

Recipes in C: The Art of Scientific Computing. New York, NY, USA: Cambridge

University Press.

Rafael C. Gonzalez, Richard E. Woods, S. L. E. 2009. Digital Image Processing Using

MATLAB, 2nd edition edition. Gatesmark Publishing.

Richardson and I. E. 2010. The H.264 Advanced Video Compression Standard. USA:

John Wiley & Sons, Ltd.

Su, Y., J. Xu, and B. Dong 2009. A source video identification algorithm based on motion

vectors. In 2009 Second International Workshop on Computer Science and Engineering,

volume 2, Pp. 312–316.

Taspinar, S., M. Mohanty, and N. Memon 2016. Source camera attribution using

stabilized video. In 2016 IEEE International Workshop on Information Forensics and

Security (WIFS), pp. 1–6.

Open MPI Development Team. 2017. Open mpi: Open source high performance

computing. https://www.open-mpi.org/ (09/01/2018).

Van, L. T., S. Emmanuel, and M. S. Kankanhalli 2007. Identifying source cell phone

using chromatic aberration. In 2007 IEEE International Conference on Multimedia and

Expo, Pp. 883–886.

Villalba, L. J. G., A. L. S. Orozco, R. R. López, and J. H. Castro 2016. Identification of

smartphone brand and model via forensic video analysis. Expert Systems with Applications.

89

CURRICULUM VITAE

Full Name : Emmanuel Kiegaing Kouokam

Birth Place and Date : Yaounde (Cameroon), 1987

Languages : French, English, Turkish, German

Education Status (Institute and Year) :

High school : Government High School Garoua 2005

Bachelor : University of Douala 2010

Master Of Science : University of Douala 2012

Workplaces and Years :

University of Douala : 2012-2014

IETR Rennes (France) : 2016-2017

E-mail : kiegaingemmanuel@gmail.com

90

