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CRAMER-RAO BOUNDS FOR A SINGLE REAL SINUSOID: THE
KNOWN FREQUENCY CASE

Erdogan DILAVEROGLU®

Abstract: The Cramér-Rao bounds for estimating the amplitude and phase of a real sinusoid of known frequency in
white Gaussian noise are examined as the phase is varied, and the largest and smallest bounds and the corresponding
critical phases are obtained.
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Bir Reel Siniise liskin Cramér-Rao Simirlari: Bilinen Frekans Durumu

Ozet: Beyaz Gauss giiriiltii i¢indeki frekansi bilinen bir reel siniisiin genlik ve faz kestirimine iliskin Cramér-Rao
siirlar faz degigirken incelenmis, ve en biiyiik ve en kiigiik sinirlar ile karsilik gelen kritik faz degerleri elde edilmis-
tir.

Anahtar Kelimeler: Cramér-Rao sinir1, genlik kestirimi, faz kestirimi, reel siniis, algak frekansli siniis.
1. INTRODUCTION

The Cramér-Rao (CR) bounds for estimating the parameters (the amplitude, phase and frequency)
of a real sinusoid in white Gaussian noise have been considered by the author in Dilaveroglu (1998) and
Dilaveroglu (1999) for the general case in which all the parameters of the sinusoid are assumed to be un-
known. However, in some applications in signal processing and communications, the frequency of the
sinusoid is known, and only the amplitude and phase of the sinusoid need to be estimated (see, e.g., the
recent paper (So, 2005)). In this paper, the CR bounds are examined for the known frequency case.

2. DATA MODEL

The data model is given by

y(t):acos(a)t+(p)+e(t), t=n,--,n+N-1, (1)
where « is the amplitude, @ =27f/f,, f is the frequency, f; is the sampling frequency, ¢ is the

phase of the sinusoid, e(?) is a zero-mean white Gaussian noise of variance 0'2, n is the first value of the
sampling index ¢, and N is the total number of data samples.

We assume in (1) that the “normalized frequency” @ is known and either (i) both the amplitude
a and the phase ¢ are unknown, or (ii) & is unknown while ¢ is known, or (iii) ¢ is known while ¢

is unknown. The unknown parameters in each case are to be estimated from the N data samples
yn)-,y(n+ N -1).

3. CR BOUNDS

3.1. Unknown Amplitude and Unknown Phase
The logarithm of the probability density of y(n), XN y(n + N — l) is given by
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In p(y(n),~-~,y(n + N - 1)) = —%ln(bzaz)

n+N-1

Z: [y(t)— o cos(at + (0)]2.

- 2)
202
The Fisher information matrix when both the amplitude ¢ and the phase ¢ are unknown, and the noise

. 2 . L
variance o~ is known, is given by
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where £ {} denotes the expectation.
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According to the CR theorem (see, e.g., Kay (1993), Ch. 3), the variance of an unbiased estimator
& of o and the variance of an unbiased estimator ¢ of ¢ are bounded below as

var{a}= E{(o? —a) }2 J! and

var{p} = E{(gb—(p)z}z J>?, “4)
where J ! , 1 =1,2, denotes the (i,i)-element of J! , the inverse of the J in (3).
From (2)-(4), we get
B 267 1-4 cos(2¢) + Bsin(2¢p)

JH , (5)
N C

_ 20% 1+ 4 cos(2p) - Bsin(2¢)

2,2
TN C ’ ©
where
A= MCOS[(N +2n— l)a)],
Nsinw
B= Msin[(N +2n 1)),
Nsinw
sin? (No)
C':l_stinza)' @

The results (5) and (6) give the CR amplitude and phase bounds as simple functions of the phase
@ of the sinusoid. We shall examine the bounds as the phase ¢ varies, and determine the largest and

smallest values of the bounds and the corresponding critical values of the phase. Since the bounds are peri-
odic in ¢ with a period of 7 it suffices to consider the bounds in the interval

welpoe-33])
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It can be shown (see Dilaveroglu (1998)) that the CR amplitude bound J L1 has one maximum
point and one minimum point in the interval ® given by

[(N+2n-1)0]

L_ ) —sgn(-[(N +2n-1)o], )%, A>0,
al‘gr;eaq)f'] S = ) [(N +2n —1)60]” o N
2 ’ )
_[(N+2n—1)a)]” >0
argminJ ! = 2_
o v+ 2;; Yol, sen(~[(V +2n-1)o], )%, 4<0, ©

where [x]_ = tan~!(tan x) in which tan"' () e [~ z/2,7/2], and sgn(x)=1 if x >0, and sgn(x)=—1

if x <0. Also, the maximum and minimum values of J L are given by

max J ! = 20° !
0 N sin(Now) ’ (10)
Nsinw
2
minJ " = 20 ,1 .
@ N . |sm(Na)l (11)
+7
Nsinw

Note that the maximum and minimum values of the CR amplitude bound J M are independent of the
first sampling index n.

The worst and best phase expressions (8) and (9) can be simplified greatly by considering the

symmetric sampling case where N is an odd number and the first sampling index n =— (N - 1)/ 2. In this
case, (8) and (9) become

Vd
argmaxJ ! ={5" 4>0, (12)
<@ 0, A4<0,
i 0, A4>0,
argl(;lelcgJ = %, 4<o0. (13)

Similar calculations show that the maximum and minimum values of the CR phase bound J 2.2
and the corresponding critical values of the phase can be expressed in terms of those of the CR amplitude
bound J ! as follows:

max J !
max J >2 :(/’_2’ (14)
9 a
min J !

minJ>?=-2_ > (15)
@ a
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argmax J*? :argmiqt)lJl’l. (16)
ped 015

argminJ2’2 :argmale’l. (17)
ped ped

Note that, as the phase ¢ varies, the CR amplitude bound J L takes its largest value when the CR
phase bound J 22 takes its smallest value and vice versa.
3.2. Unknown Amplitude and Known Phase

If, in addition to the frequency, the phase is also known, then the CR bound for estimating the am-
plitude is simply given by the inverse of the (1,1)-element of the J in (3), which is

207 1
Ji1 = . 18
MTUON 1+ 4 cos(2p) - Bsin(2¢p) (1%

The maximum and minimum values of the CR amplitude bound J 1_ 11 and the corresponding critical values

of the phase ¢ are given by

maXJl_’ll zmaXJl’l, (19)
4 (4

min Jl_ll =minJ "', (20)
p ¢

argmale_ll =argmaXJ1’1, 1)
ped ped

argminJl_l1 —argminJ "'
ped

min (22)

Thus, the largest and smallest values of the CR amplitude bound and the critical values of the
phase for amplitude estimation are the same whether the phase is known or not. In general, however, the
bound in the known phase case is less than the bound in the unknown phase case.

3.3. Known Amplitude and Unknown Phase

If the phase is the only unknown parameter in the model (1), then the CR bound for estimating the
phase equals the inverse of the (2,2)-element of the J in (3), which is given by

g1 202 1
22 Ng? 1- Adcos(2p)+ Bsin(2¢p)

(23)

The maximum and minimum values of the CR phase bound J, 12 and the corresponding critical values of
the phase can be expressed in terms of those of the CR phase bound J 2.2 as follows:
maxJz_}z =max J>2, (24)
@
ming_’lz = minJ>?,
4

(25)
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arg max J2_12 = arg max JA2, (26)
pe® 7

ped
: -1 _ : 2,2
argminJ, , =argminJ =~ (27)
ped 7 ped

Thus, the largest and smallest values of the CR phase bound and the critical values of the phase
for phase estimation are the same whether the amplitude is known or not.

4. DISCUSSION

If 7/N<w< (N— 1)72'/N in (7), then A=0, B=0,and C =1. In this case, the dependence
of the CR bounds upon the phase of the sinusoid may be neglected. On the other hand, if 0 < @ < 71'/ N or

(N - 1)7r /N <@<r (ie., the “low-frequency” case), then the dependence of the bounds upon the phase

becomes important. For the low-frequency case, the largest and smallest values of the bounds and the cor-
responding critical values of the phase derived in this paper can be used to represent the worst and best
case scenarios in testing the performance of unbiased amplitude and phase estimators.
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