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A characterization of ccr-curves in Rm
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Abstract. We study the curve in Rm for which the ratios between two consecutive curvatures are constant (ccr-curves). We show
that closed ccr-curves in Euclidean space Rm are of finite type. We also consider Frenet curves with constant harmonic curvatures
and show that an immersed curve in R2n+1 with constant harmonic curvatures Hi at point γ(s0) has a Darboux vertex at that point.
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1. INTRODUCTION

Let γ = γ(s) : I → Rm be a regular curve in Rm (i.e. ‖γ ′‖ is nowhere zero), where I is an interval in R. The
curve γ is called a Frenet curve of rank r (r ∈N0) if γ ′(t), γ ′′(t), ...,γ(r)(t) are linearly independent and γ ′(t),
γ ′′(t), ...,γ(r+1)(t) are no longer linearly independent for all t in I. In this case, Im(γ) lies in an r-dimensional
Euclidean subspace of Rm. For each Frenet curve of rank r there occur an associated orthonormal r-frame
{E1,E2, ...,Er} along γ, the Frenet r-frame, and r− 1 functions κ1,κ2, ...,κr−1:I −→ R, and the Frenet
curvatures, such that
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where v is the speed of the curve.
In fact, to obtain E1,E2, ...,Er it is sufficient to apply the Gram–Schmidt orthonormalization process to

γ ′(t), γ ′′(t), ...,γ(r)(t). Moreover, the functions κ1,κ2, ...,κr−1 are easily obtained as by-product during this
calculation. More precisely, E1,E2, ...,Er and κ1,κ2, ...,κr−1 are determined by the following formulas [8]:
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v1(t) : = γ ′(t); E1 :=
v1

‖v1(t)‖ ;

vk(t) : = γ(k)(t)−
k−1

∑
i=1

< γ(k)(t),vi(t) >
vi(t)

‖vi(t)‖2 ;

κk−1(t) : =
‖vk(t)‖

‖vk−1(t)‖‖v1(t)‖ ;

Ek : =
vk

‖vk(t)‖ ,

where k ∈ {2,3, ...,r}. It is natural and convenient to define Frenet curvatures κr = κr+1 = ... = κm−1 = 0.
It is clear that E1,E2, ...,Er and κ1,κ2, ...,κr−1 can be defined for any regular curve (not necessarily a Frenet
curve) in the neighbourhood of a point s0 for which γ ′(s0), γ ′′(s0), ...,γ(r)(s0) are linearly independent.

The notion of a generalized helix in R3, a curve making a constant angle with a fixed direction, can be
generalized to higher dimensions in many ways. In [14], the same definition is proposed in Rm. In [9], the
definition is more restrictive: the fixed direction makes a constant angle with all the vectors of the Frenet
frame. It is easy to check that the definition only works in the odd dimensional case. Moreover, in the
same reference, it is proven that the definition is equivalent to the fact that the ratios κ2

κ1
, κ4

κ3
, ...,κi being the

curvatures, are constant.
In [15] Uribe-Vargas proved that the immersed curve inR2n+1, n > 1 has a Darboux vertex at point γ(s0)

if and only if (κ1
κ2

)
′
= 0,(κ3

κ4
)
′
= 0, ...,(κ2k−1

κ2k
)
′
= 0.

Recently, Monterde [11] has considered the Frenet curves in Rm which have constant curvature ratios
(i.e., κ2

κ1
, κ3

κ2
, κ4

κ3
... are constant). The Frenet curves with constant curvature ratios are called ccr-curves.

In the present study we prove that if the harmonic curvatures Hi of the immersed curve in R2n+1 are
constant at point γ(s0), then γ has a Darboux vertex at that point.

We also prove that every closed ccr-curve is of finite type.

2. W-CURVES

Definition 1. A Frenet curve of rank r for which κ1,κ2, ...,κr−1 are constant is called (generalized)
screw line or helix [6]. Since these curves are trajectories of the 1-parameter group of the Euclidean
transformations, Klein and Lie [10] called them W-curves.

A unit speed W-curve of rank 2k in Rm has the parameterization of the form

γ(s) = a0 +
k

∑
i=1

(ai cos µis+bi sin µis)

and a unit speed W-curve of rank (2k +1) has the parameterization of the form

γ(s) = a0 +b0s+
k

∑
i=1

(ai cos µis+bi sin µis),

where a0,b0,a1, ...,ak,b1, ...,bk are constant vectors in Rm and µ1 < µ2 < ... < µk are positive real numbers.
So, a W-curve of rank 1 is a straight line, a W-curve of rank 2 is a circle, and a W-curve of rank 3 is a

right circular helix.
The subset of R2n parameterized by

→
x (u1,u2, ...,un) = (r1 cos(u1),r1 sin(u1),r2 cos(u2),r2 sin(u2), ...,rn cos(un),rn sin(un)),

where ui ∈ R, is called a flat torus in R2n.
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By analogy, the subset of R2n+1 parameterized by

→
x (u1,u2, ...,un) = (r1 cos(u1),r1 sin(u1),r2 cos(u2),r2 sin(u2), ...,rn cos(un),rn sin(un),a),

where ui ∈ R and a is a real constant, will be called a flat torus in R2n+1.
We give the following examples.

Example 1. Any curve in a flat torus of the kind

α(t) =
→
x (m1t,m2t, ...,mnt)

has all its curvatures constant (i.e. W-curve).
These curves are the geodesics of the flat tori and it is proven in [13] that they are twisted curves if and

only if the constants mi 6= m j for all i 6= j. For closed twisted curves see also [13].

Example 2. (Helices in S3) Let S3 be the unit 3-sphere imbedded in the Euclidean 4-space E4. A model
helix in S3 ⊂ E4 is given by

γ(s) = (cosφ cos(as),cosφ sin(as),sinφ cos(bs),sinφ sin(bs)),

with
a2 cos2 φ +b2 sin2 φ = 1.

Here s is the arclength parameter. It is easy to see that γ lies in the flat torus:

x2
1 + x2

2 = cos2 φ , x2
3 + x2

4 = sin2 φ .

Example 3. The Frenet curve α : I → R4 given by the parameterization

α(s) =
1√

r2
1 + r2

2

(
r1

m1
sin(m1s),− r1

m1
cos(m1s),

r2

m2
sin(m2s),− r2

m2
cos(m2s)

)

is a spherical W-curve (with radius 1), (see [11]) where, r2
1m2

2 + r2
2m2

1 = m2
1m2

2(r
2
1 + r2

2).

3. CURVES OF FINITE TYPE

Let f (s) be a periodic continuous function with period 2πr. Then it is well known that f (s) has a Fourier
series expansion given by

f (s) =
a0

2
+a1 cos

s
r
+a2 cos

2s
r

+ ...+b1 sin
s
r
+b2 sin

2s
r

+ ... ,

where ak and bk are the Fourier coefficients defined by

ak =
1

πr

∫ πr

−πr
f (s)cos

ks
r

ds, k = 0,1,2, ... ,

bk =
1

πr

∫ πr

−πr
f (s)sin

ks
r

ds, k = 1,2, ... .

Let γ be a closed curve of length 2πr. If x : γ → Rm is an isometric immersion, then

x( j) =
d jx
ds j .
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Because ∆ =− d2

ds2 , we have
∆ jH = (−1) jx(2 j+2), j = 0,1,2, ... .

If x is of finite type, each coordinate function xi satisfies the following homogeneous ordinary differential
equation with constant coefficients:

x(2k+2)
i + c1x(2k)

i + ...+ ck−1x(4)
i + ckx(2)

i = 0, i = 1,2, ...,m

for some integer k≥ 1 and constant c1, ...,ck. Because our solutions xi of the above differential equation are
periodic solutions with period 2πr, each xi is a finite linear combination of the following particular solutions:

1, cos
(nis

r

)
, sin

(mis
r

)
, ni,mi ∈ Z.

Therefore, each xi is of the form

xi = ci +
qA

∑
t=pA

(
aA(t)cos

ts
r

+bA(t)sin
ts
r

)

for some suitable constant ci,aA(t),bA(t) (A = 1, ...,n) and integers pA, qA . Thus each xi has a Fourier
series expansion of finite sum. Similarly, if each xi has a Fourier series expansion of finite sum, then x is of
finite type (see [4,5,7]).

Theorem 1. [3] Let γ be a closed curve of length 2πr in Rm. Then isometric immersion x : γ → Rm is of
finite type if and only if the Fourier series expansion of each coordinate function of γ,

γ(s) = a0 +
∞

∑
t=1

(
at cos

ts
r

+bt sin
ts
r

)

has only finite nonzero terms.

Thus, using the above theorems, we have the following corollary.

Corollary 2. Every closed k-type curve γ in Rm can be written in the form

γ(s) = a0 +
k

∑
i=1

(ai cosλtis+bi sinλtis), (1)

where T (x) = {t1, t2, ...tk} is the order of the curve and a0,a1, ...,ak,b1, ...,bk are vectors in Rm such that for
any i in {1,2, ...,k}, ai and bi are not simultaneously zero. Moreover, if q = tk is the upper order of γ , then∣∣aq

∣∣ =
∣∣bq

∣∣ 6= 0.

Corollary 3. Every null k-type curve γ in Rm can be written in the form

γ(s) = a0 +b0s+
k

∑
i=1

(ai cosλtis+bi sinλtis), (2)

where a0,b0,a1, ...,ak,b1, ...,bk are vectors in Rm such that b0 6= 0 and for any i in {1,2, ...,k}, ai and bi are
not simultaneously zero. Moreover,

∣∣aq
∣∣ =

∣∣bq
∣∣ 6= 0, where q is the upper order of the curve γ.

From (1) and (2) we obtain the following corollary.

Corollary 4. [2]
1) Every k-type curve of Rm lies in an affine 2k-subspace R2k of Rm.
2) Every null k-type curve of Rm lies in an affine (2k−1)-subspace R2k−1 of Rm.
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4. GENERALIZED HELICES

In the present section we give some well-known definitions of harmonic curvature and Darboux vertex of a
curve in Rm. We prove that the immersed curve in Rm with constant harmonic curvatures Hi at point γ(s0)
has a Darboux vertex at that point.

Definition 2. Let γ : I ⊂ R→ Rm be a regular curve of rank r with unit speed. For 2 ≤ j ≤ r− 2, the
functions H j : I → R defined by

H0 = 0,H1 =
κ1

κ2
, H j =

{
∇v1H j−1 +H j−2κ j

} 1
κ j+1

(3)

are called the harmonic curvatures of γ, where κ1,κ2, ...,κr−1 are Frenet curvatures of γ which are not
necessarily constant and ∇ is the Levi-Civita connection [12]. For more details see also [1].

Definition 3. The unit speed Frenet curve of rank r is called general helix of order (r−2) if

r−2

∑
i=1

H2
i = c, (4)

where c is constant [12].

By the use of (3) and (4) we get the following result.

Proposition 5. Let γ : I ⊂ R→ R2n+1 be a regular curve of rank r with unit speed. If γ has constant
harmonic curvature, then

H2r = 0, 1≤ r ≤ n,

H2r−1 =
κ1

κ2
· κ3

κ4
· ... · κ2r−1

κ2r
, 1≤ r ≤ n.

Definition 4. Let γ be a smoothly immersed curve in R2n+1, n > 1, with curvatures κ1,κ2, ...,κ2n−1,κ2n,
where κ2n 6= 0. Let us denote

a0 = κ2κ4...κ2n,

a1 =
κ1

κ2
a0,

... ...

a j =
κ2 j−1

κ2 j
a j−1,

an =
κ2n−1

κ2n
an−1 = κ1κ3...κ2n−1.

The Darboux vector in R2n+1 is defined by

∼
d(s) = a0t +a1n2 + ...+ann2n,

where
{

t = γ ′(s),n1,n2, ...,n2n

}
is the Frenet frame of γ [15].

Lemma 6. [15] The derivative of
∼
d(s) is

∼
d
′
(s) = a

′
0t +a

′
1n2 + ...+a

′
nn2n.
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Definition 5. (Darboux vertex): The point γ(s0) is called Darboux vertex of γ if the first derivative of the

Darboux vector
∼
d(s) is vanishing at that point.

Theorem 7. [15] Let γ be a smoothly immersed curve inR2n+1( n > 1), with κ1,κ2, ...,κ2n for its curvatures.
The curve has a Darboux vertex at point γ(s0) if and only if

(
κ1

κ2

)′

= 0,

(
κ3

κ4

)′

= 0, ... ,

(
κ2n−1

κ2n

)′

= 0. (5)

Proof. Let γ be a smoothly immersed curve in R2n+1. If γ has a Darboux vertex at γ(s0), then by Lemma 6
we get a

′
0 = 0, a

′
1 = 0, ...,a

′
n = 0. By Definition 4 we get the result.

By Proposition 5 and Theorem 7 we get the following results.

Corollary 8. Let γ : I⊂R→R2n+1 be a regular curve of rank 2n with unit speed. If the harmonic curvatures
Hi are constant at the point γ(s0), then γ has a Darboux vertex at that point.

Proof. If the harmonic curvatures Hi are constant at the point γ(s0), then by Proposition 5 all the ratios
κ1
κ2

, κ3
κ4

, ..., κ2n−1
κ2n

are constant. So, taking the derivatives of the ratios κ1
κ2

, κ3
κ4

, ..., κ2n−1
κ2n

with respect to s, we
obtain (5). Using Theorem 7, we complete the proof.

Corollary 9. If γ : I ⊂ R→R2n+1 has a Darboux vertex at the point γ(s0), then γ is a general helix of order
(2n−1).

5. CURVES WITH CONSTANT CURVATURE RATIOS

A curve γ = γ(s) : I → Rm is said to have constant curvature ratios (ccr-curve) if all the quotients κi+1
κi

are
constant [11].

As is well known, generalized helices in R3 are characterized by the fact that the quotient τ
κ is constant

(Lancret’s theorem). It is in this sense that ccr-curves are generalization to Rm of generalized helices in R3.
In [9] a generalized helix in the m-dimensional space (m odd) is defined as a curve satisfying that the

ratios κ2
κ1

, κ4
κ3

, ... are constant. It is also proven that the curve is a generalized helix if and only if there exists
a fixed direction which makes constant angles with all the vectors of the Frenet frame.

Obviously, ccr-curves are a subset of generalized helices in the sense of [9].

Corollary 10. Every W-curve is a ccr-curve.

Lemma 11. [11] Let β be a ccr-curve with non-constant curvature. Then Frenet’s formulae of β are reduced
to a linear system of first order differential equations with constant coefficients




−→e ′
1(t)−→e ′
2(t)−→e ′
3(t)
· · ·−→e ′
n−1(t)−→e ′

n(t)




=




0 1 0 0 · · · 0 0
−1 0 c2 0 · · · 0 0
0 −c2 0 c3 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 cn−1

0 0 0 0 · · · −cn−1 0







−→e 1(t)
−→e 2(t)
−→e 3(t)
· · ·−→e n−1(t)
−→e n(t)




(6)

for some constants c2, ...,cn−1.

Lemma 12. [16] Let dx
dt = Ax(t) be the linear system of first order differential equations with constant

coefficients. Then the homogeneous solutions of the system are given by

x =
n

∑
i=1

diuieλit ,
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where ui are the eigenvectors, λi are the eigenvalues of the constant coefficient matrix of the system, and di
are arbitrary constants.

We prove the following main result.

Theorem 13. (Main Result) Every closed ccr-curve is of finite type.

Proof. Let A be the matrix of constant coefficient of system (6). Due to the skewsymmetry of matrix A, it
can have no real eigenvalues other than zero. Due to the fact that the determinant of A vanishes only for odd
n, we can say that for odd dimensions, 0 is an eigenvalue, whereas for even dimensions, 0 is an eigenvalue
only if kn−1 = 0.

From now on, we shall consider that all the curvatures, and all the constants ci are not zero. Therefore,
the eigenvalues are all of multiplicity 1.

Let λl = αl ± iµl , l = 1, ...,
[n

2

]
, with αl,µl ∈ R be the nonzero eigenvalues of the coefficient matrix A.

For n = 2k, from Lemma 12 the general solution of the system for the first vector becomes

−→e 1(u) =
k

∑
l=1

dluleαlu cos(µlu)+ fluleαlu sin(µlu)

and similarly for n = 2k +1, the general solution of the system for the first vector is

−→e 1(u) = a0 +
k

∑
l=1

dluleαlu cos(µlu)+ fluleαlu sin(µlu),

where a0, .u1, ...,uk are vectors in Rm and dl , fl are arbitrary constants.
Condition ‖−→e 1(u)‖ = 1 for all u implies that all the real parts of the eigenvalues are zero. Therefore,

for n = 2k, the general solution of the system for the first vector is

−→e 1(u) =
k

∑
l=1

dlul cos(µlu)+ flul sin(µlu).

Similarly for n = 2k +1, the general solution of the system for the first vector is

−→e 1(u) = a0 +
k

∑
l=1

dlul cos(µlu)+ flul sin(µlu),

where a0,u1, ...,uk are vectors in Rm and dl , fl are arbitrary constants.

Since
·
β (u) =−→e 1(u), for n = 2k,

β (s) = a0 +
k

∑
l=1

−→
D l cos(µls)+

−→
E l sin(µls).

Similarly for n = 2k +1,

β (s) = b0 +a0s+
k

∑
l=1

−→
D l cos(µls)+

−→
E l sin(µls),

where
−→
E l = dl

µl
ul and

−→
D l =− fl

µl
ul are vectors which are not necessarily constant. So, using Corollary 2 and

Corollary 3, we complete the proof of the theorem.
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Example 4. The Frenet curve α : I → R4 given by the parameterization

α(s) =

(
0,−

√
3

2
,0,

1
2

)
+

∫ s

0

−→e 1(arcsin(2u))du, s ∈
]
−1

2
,
1
2

[

is a spherical ccr-curve with the centre at the origin of coordinates, with radius 1 and non-constant curvatures
(see [11]), where

−→e 1(t) =
1√
2

(
cos

(√
3
2

t

)
,sin

(√
3
2

t

)
,cos

(
1√
2

t
)

,sin
(

1√
2

t
))

.
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Ruumi Rm ccr-kõverate iseloomustamine

Günay Öztürk, Kadri Arslan ja H. Hilmi Hacisalihoglu

On uuritud ruumi Rm kõveraid, mille järjestikuste naaberkõveruste suhted on konstantsed (ccr-kõverad). On
näidatud, et kinnine ccr-kõver eukleidilises ruumis on lõplikku tüüpi. On käsitletud ka Frenet’ kõveraid
konstantsete harmooniliste kõverustega ja näidatud, et sellisel kõveral on ruumis R2n+1 Darboux’ tipp
uuritavas punktis.


