Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/8274
Başlık: İşlem planlama ve çizelgelemede genetik algoritmaların kullanımı
Diğer Başlıklar: Genetic algorithms in process planning and scheduling
Yazarlar: Öztürk, Nursel
Erdiller, Aslı
Uludağ Üniversitesi/Fen Bilimleri Enstitüsü/Endüstri Mühendisliği Anabilim Dalı.
Anahtar kelimeler: Atölye çizelgeleme
Alternatif makineler
Genetik algoritmalar
Job shop scheduling
Alternative machines
Genetic algorithms
Yayın Tarihi: 29-Tem-2003
Yayıncı: Uludağ Üniversitesi
Atıf: Erdiller, A. (2003). İşlem planlama ve çizelgelemede genetik algoritmaların kullanımı. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
Özet: Atölye çizelgeleme problemi üretim planlamanın önemli aşamalarından birisidir. Ancak üretim planlamanın atölye koşullan dikkate alınmadan yapılması sonucunda oluşturulan çizelgeler atölye ortamında bire bir takip edilememektedir. Bu sorun çizelgeleme aşamasının üretim planlamanın diğer aşamaları ile bütünleştirilmesini gerektirir. Bu çalışma ile üretim planlamanın çizelgeleme ve işlem planlama aşamalarının tümleştirilmesi amaçlanmıştır. Bu çalışmada tümleşik çizelgeleme ve işlem planlama probleminin çözümüne yönelik bir yaklaşık yöntem olan çok amaçlı genetik algoritma sunulmaktadır. Tanımlanan tümleşim probleminde alternatif makinelerin bulunduğu bir atölye ortamı ele alınmıştır. Sunulan yöntemde alternatif makinelerin kullanımı ile oluşan alternatif rotalar, çizelge zamanı, toplam pozitif geç kalma süresi ve geç kalan iş sayısı kriterlerinden oluşan bir uygunluk fonksiyonu kullanılarak karşılaştırılmışlardır. Çizelgeleme problemi, alternatif makinelerin bulunması ile daha karmaşık hale gelmektedir. Bu tip problemler için eniyi çözüme polinom zamanda ulaşmak mümkün olmamaktadır. Ancak önerilen yaklaşık yöntem ile tümleşik işlem planlama ve çizelgeleme probleminin yakın-eniyi çözümlerine ulaşılmıştır.
Job shop scheduling problem is one of the important stages of production planning. However schedules cannot be followed properly in shop floor, because of the production plans prepared without concerning shop floor conditions. Integrating scheduling with other production planning stages can solve this problem. The aim of this study is to integrate scheduling and process planning stages of production planning. In this study a multi objective genetic algorithm for the solution of this integrated operations planning and scheduling problem is presented. In the given integration problem a shop floor with alternative machines is examined. With the proposed methodology, the alternative routes formed by the use of alternative machines are compared by a fitness function that includes makespan, total tardiness and number of tardy jobs criteria. Scheduling problem becomes more complex with the addition of alternative machines. For these kinds of problems it is not possible to reach to the optimal solutions in polynomial time. Using the proposed methodology near-optimal solutions are found for integrated operations planning and scheduling problems.
URI: http://hdl.handle.net/11452/8274
Koleksiyonlarda Görünür:Yüksek Lisans Tezleri / Master Degree

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
139936.pdf
  A kadar 2099-12-31
7.88 MBAdobe PDFGöster/Aç Bir kopya isteyin


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons