Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/3605
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorÖztürk, Metin-
dc.contributor.authorKoçum, Ahmet Faruk-
dc.date.accessioned2019-12-19T07:01:38Z-
dc.date.available2019-12-19T07:01:38Z-
dc.date.issued2007-
dc.identifier.citationKoçum, A. F. (2007). Konform dönüşümler ve konformal modül. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.tr_TR
dc.identifier.urihttp://hdl.handle.net/11452/3605-
dc.description.abstractBu çalışma esas olarak, kompleks fonksiyonlar teorisinde önemli bir yer tutan, fen ve mühendislikte bir çok uygulama alanı olan konform dönüşümleri ayrıntılı inceleme temeline kurulmuştur. Çalışmamız dört bölümden oluşmaktadır. Birinci bölümde, diğer bölümlerde kullanılacak olan temel tanım ve teoremler verildi. İkinci bölümde konform dönüşümün tanımı diffeomorfizme bağlı olarak verildi. Kompleks düzlemde bir bölgede konform olma özelliği analitiklik ve ünivalent olmaya bağlı olarak ifade edildi. Genişletilmiş kompleks düzlemde konform dönüşümlerin tipi belirlendi. Konform dönüşümlerin temel teoremi sayılan Riemann dönüşüm teoremi verildi. Üçüncü bölümde, konformal modül tanımlanarak bazı özellikleri verildi. Konformal modülden faydalanarak Riemann dönüşüm teoreminin genellemesi olan birim dairenin konform genişlemesiyle ilgili Caratheodory-Osgood teoreminin modern ispatı verildi. Son bölümde, poligonlar üzerine konform dönüşümler için Schwarz-Christoffel formülü verilerek çeşitli uygulamaları yapıldı. Ayrıca basit bağlantılı bölgeler arasında konform dönüşüm örnekleri verildi.tr_TR
dc.description.abstractThis work as bases is established investigation based on conformal mappings, which are taken an important place in complex analysis and which have applications on science and engineering. Our work is formed by four chapters. In first chapter, basic definition and theories, which will be used in other chapters, were given. In second chapter, definition of conformal mapping was given depending on diffeomorphisms. In the complex plane, the link between the conformal mappings and analytic univalent functions was established. In the extended complex plane, the type of the conformal mappings was determined. Riemann mapping theorem, which is fundamental theorem in the conformal mappings, was given. In third chapter, conformal modulo was defined and its some properties were given. Glasses of functions which typically real, one direction convex and star like are defined and features of these functions are examined. Upper bound for maximum modules of these functions and its derivatives were given. The modern proof of the theorem Caratheodory-Osgood which is generalization of Riemann mapping theorem was given. In last chapter, the Schwarz-Christoffel formula and its applications were given. Also, conformal mappings examples between simple connected were given.en_US
dc.format.extent81 sayfatr_TR
dc.language.isotrtr_TR
dc.publisherUludağ Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectKonform dönüşümlertr_TR
dc.subjectKonformal modül ve ünivalent fonksiyonlartr_TR
dc.subjectConformal mappingsen_US
dc.subjectConformal modulus and univalent functionsen_US
dc.titleKonform dönüşümler ve konformal modültr_TR
dc.title.alternativeConformal mappings and conformal modulusen_US
dc.typemasterThesisen_US
dc.relation.publicationcategoryTeztr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen Bilimleri Enstitüsü/Matematik Anabilim Dalı.tr_TR
Appears in Collections:Yüksek Lisans Tezleri / Master Degree

Files in This Item:
File Description SizeFormat 
202316.pdf3.4 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons