
DEEP LEARNING BASED VEHICLE

MAKE AND MODEL CLASSIFICATION

Burak SATAR

T.C.
ULUDAĞ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEEP LEARNING BASED VEHICLE MAKE AND MODEL CLASSIFICATION

Burak SATAR

Assoc. Prof. Dr. Ahmet Emir DİRİK

(Supervisor)

MASTER OF SCIENCE THESIS
DEPARTMENT OF ELECTRONIC ENGINEERING

BURSA - 2018

U.Ü. Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu
tez çalışmasında;

– tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,

– görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak
sunduğumu,

– başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara
uygun olarak atıfta bulunduğumu,

– atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,

– kullanılan verilerde herhangi bir tahrifat yapmadığımı,

– ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka
bir tez çalışması olarak sunmadığımı

beyan ederim.

07/08/2018
İmza

Burak Satar

ABSTRACT

M.Sc. Thesis

DEEP LEARNING BASED
VEHICLE MAKE AND MODEL CLASSIFICATION

Burak SATAR

Uludağ University
Graduate School of Natural and Applied Sciences

Department of Electronic Engineering

Supervisor: Assoc. Prof. Dr. Ahmet Emir DİRİK

Many pieces of research have been performed on the vehicle make and model classification
recently. This thesis studies the problems regarding this topic. Being able to reach high
classification accuracy is one of the main challenges as well as to reduce the annotation
time of the images. In this thesis, it is first created a fine-grained dataset by using online
marketplaces of Turkey to address these challenges by implementing all experiments on
it. Then, it is proposed a pipeline to combine an SSD (Single Shot Multibox Detector)
model with a CNN (Convolutional Neural Network) model. In the pipeline, the vehicles
are detected by following an algorithm to diminish the time of annotation. The detected
vehicles are fed into the CNN model. The results show that the classification accuracy
reaches roundly 4% better score when compared with a conventional CNN model. Later,
the detected vehicles are picked as Ground Truth Bounding Boxes (GTBB) of the images.
Thus, every single image in the dataset contains its GTBB. As a result, they are fed into
an SSD model in a different pipeline. By that, it is reached acceptable classification &
detection accuracy results even though it is not used perfectly shaped GTBB. Lastly, it
is proposed an application which focuses on a use case by using our proposed pipelines.
Assuming that license plates are readable, it detects the unlawful vehicles by comparing
their license plate numbers and make & models.

Keywords: deep learning, vehicle, classification, CNN, ResNet, detection, SSD
2018, x + 67 pages

i

ÖZET

Yüksek Lisans Tezi

DERİN ÖĞRENME TABANLI
ARAÇ MARKA & MODEL SINIFLANDIRMA

Burak SATAR

Uludağ Üniversitesi
Fen Bilimleri Enstitüsü

Elektronik Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Ahmet Emir DİRİK

Son zamanlarda araç marka ve model sınıflandırma üzerine çok sayıda araştırma yapıl-
maktadır. Bu bağlamda karşılaşılan problemler tez kapsamında ele alınmaktadır. Yüksek
başarı oranı ile sınıflandırma yapabilmek ve imgelerin etiketlenme süresini azaltabilmek
karşılaşılan ana problemler arasındadır. Bu çalışmada, online araç satış sitelerinden veriler
toplanarak bir veritabanı oluşturuldu. Tez boyunca yapılan deneylerde bu veritabanı
kullanıldı. Sonrasında, SSD (Single Shot Multibox Detector) tabanlı bir model CNN
(Convolutional Neural Network) tabanlı bir model ile birleştirildi ve yeni bir model akışı
önerildi. Bu bağlamda araçlar bir algoritma aracılığı ile tespit edildi. Bu sayede, etiketleme
süresinde önemli bir azalma sağlandı. Tespit edilen araçlar CNN modelinin eğitiminde
kullanıldı. Klasik bir CNN modeli ile kıyaslandığında, sınıflandırma başarı oranında
yaklaşık olarak %4’lük bir artış görüldü. Akabinde, tespit edilen araçların koordinatları
ilgili imgelerin gerçek referans değerleri olarak alınmıştır. Başka bir model akışında,
bu imgeler SSD modelinin eğitiminde kullanılmıştır. Sonuç olarak bu model akışında;
oldukça iyi tanımlanmamış gerçek referans değerlerine rağmen, kabul edilebilir derecede
sınıflandırma ve tespit etme başarı oranlarına ulaşılmıştır. Son olarak, bahsi geçen model
akışlarını kullanarak gerçek bir senaryoya odaklanan bir uygulama önerilmiştir. Bu uygu-
lamada, plaka numarası ile araç marka & model bilgisi eşleştirip veritabanı üzerinden
kontrolü yapılmaktadır. Plakanın okunulabilir olduğu varsayılmıştır.

Anahtar Kelimeler: derin öğrenme, araç, sınıflandırma, evrişimsel ağ, ResNet, tespit
etme, SSD
2018, x + 67 sayfa

ii

ACKNOWLEDGEMENTS

I would like to present my unique thanks to Assoc. Prof. Dr. Ahmet Emir Dirik for
his professional supervision and guidance throughout the thesis study at the Uludağ
University.

A special thank to my father Müfit Satar, my mother Türkan Satar, and my sister Fulya Sa-
tar for their dedicated support and continuing encouragement throughout my study.

I would also like to thank Ayşe Mutlu, Ahmet Anıl Yaylalıoğlu, Bahadır Gölcük, Göktuğ
Enes Göktürk and the rest members of Bursa I/O community. Following deep learning
based online courses with them kept my progress on schedule. My other thanks to Eyüp
Görkem Bayram for helping me to write a web crawler to collect the data through online
sources.

Burak Satar
07/08/2018

iii

 iv

TABLE OF CONTENTS

Page

ABSTRACT . i

ÖZET . ii

ACKNOWLEDGEMENTS . iii

LIST OF SYMBOLS AND ABBREVIATIONS . vi

LIST OF FIGURES . viii

LIST OF TABLES . x

1 INTRODUCTION . 1

2 THEORETICAL FUNDAMENTALS . 4

2.1 Machine Learning . 4

2.2 Neural Networks . 5

2.3 Convolutional Neural Networks . 7

2.3.1 Convolution . 8

2.3.2 Max pooling . 9

2.3.3 Hyper-parameters . 10

2.3.4 Activation functions . 11

2.3.5 Zero padding . 13

2.3.6 Dropout . 13

2.3.7 Batch normalization . 14

2.3.8 Adaptive moment estimation (Adam) optimizer . 15

2.3.9 Categorical cross entropy loss . 16

2.4 Residual Networks (ResNet) . 16

2.5 Single Shot MultiBox Detection (SSD) . 18

3 MATERIALS and METHODS . 22

3.1 Dataset Generation . 23

3.2 Pre-processing . 26

3.3 Vehicle Classification and Detection . 29

3.4 An application . 33

 v

4 RESULTS . 35

4.1 Experiment I: Classification by a ResNet Model . 37

4.2 Experiment II: Classification by a ResNet + an SSD Model 41

4.3 Experiment III: Detection by an SSD Model . 45

5 DISCUSSION AND CONCLUSION . 54

REFERENCES . 56

APPENDICES . 59

APPENDIX 1 — PRECISION-RECALL AND AVERAGE PRECISION 60

APPENDIX 2 — RESNET CODE BLOCK . 63

CURRICULUM VITAE . 66

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols Explanation

α Learning rate
bx Centre point of a bounding box over x axis
by Centre point of a bounding box over y axis
bh Height of a bounding box
bw Width of a bounding box
β1 The exponential decay rate for past gradients
β2 The exponential decay rate for past squared gradients
ε Trivial number to prevent a division by zero
µ Mean
σ Standard deviation
Wi Weights of ith block
Ws Weights of shortcut block
x Input to a perceptron

Abbreviations Explanation

Adam Adaptive Moment Estimation
AI Artificial Intelligence
ANN Artificial Neural Networks
CNN Convolutional Neural Network
CUDA Compute Unified Device Architecture
DL Deep Learning
FN False Negative
FP False Positive
FPS Frame Per Second
GPU Graphics Processing Unit
GTBB Ground Truth Bounding Boxes
ILSVRC ImageNet Large Scale Visual Recognition Competition
mAP Mean Average Precision
ML Machine Learning
MS COCO Microsoft Common Objects in Context
NMS Non-Maximum Suppression
OpenCV Open Source Computer Vision Library
RAM Random Access Memory
ReLU Rectified Linear Unit

vi

ResNet Residual Network
RMSProp Root Mean Square Propagation
SSD Single Shot Multibox Detector
TN True Negative
TP True Positive
TurkStat Turkish Statistical Institute
VGG Visual Geometry Group
VOC Visual Object Classes

vii

 viii

LIST OF FIGURES

Page

Figure 2.1. The difference among AI, ML and DL (Goodfellow et al. 2016) 4

Figure 2.2. Performance comparison between deep learning and other neural networks
 (Ng 2017) . 5

Figure 2.3. Biological neurons (Kriesel 2007) . 5

Figure 2.4. A perceptron (Nielsen 2015) . 6

Figure 2.5. The architecture of a basic neural network . 6

Figure 2.6. A convolutional neural network, LeNet architecture (LeCun and Bengio
 1998) . 7

Figure 2.7. Convolution process . 9

Figure 2.8. Max pooling process with the stride of 2 . 10

Figure 2.9. Choosing the learning rate . 10

Figure 2.10. Activation functions . 11

Figure 2.11. Softmax classifier . 12

Figure 2.12. Zero padding . 13

Figure 2.13. Using Dropout in a model . 14

Figure 2.14. Training error performance between a plain network and a ResNet
 model (Ng 2017) . 17

Figure 2.15. A ResNet block (He et al. 2015) . 18

Figure 2.16. SSD framework [taken from (Liu et al. 2015)] . 19

Figure 2.17. Intersection over union . 20

Figure 3.1. Jupyter notebook architecture . 22

Figure 3.2. Normalization of the data (Fei-Fei Li 2017) . 26

Figure 3.3. Some data augmentation techniques . 27

Figure 3.4. Adding zero-padding to an image . 28

Figure 3.5. Linear and non-linear classification . 29

Figure 3.6. Differences among classification, classification with localization and de-
 tection . 30

Figure 3.7. Showing a bounding box . 31

Figure 3.8. Custom ResNet architecture . 32

 ix

Figure 3.9. The architecture of SSD Model for Detection . 33

Figure 3.10. A use case diagram, Case I: license plates match however models don’t . 34

Figure 4.1. Overview of Experiments . 35

Figure 4.2. Loss graph of Experiment I on (224,224,3) shaped test set 38

Figure 4.3. Accuracy graph of Experiment I on (224,224,3) shaped test set 38

Figure 4.4. Confusion matrix of Experiment I on (224,224,3) shaped test set 39

Figure 4.5. Loss graph of Experiment I on (300,300,3) shaped test set 40

Figure 4.6. Accuracy graph of Experiment I on (300,300,3) shaped test set 40

Figure 4.7. Confusion matrix of Experiment I on (300,300,3) shaped test set 41

Figure 4.8. Loss graph of Experiment II on (224,224,3) shaped test set 42

Figure 4.9. Accuracy graph of Experiment II on (224,224,3) shaped test set 42

Figure 4.10. Confusion matrix of Experiment II on (224,224,3) shaped test set 43

Figure 4.11. Loss graph of Experiment I on (300,300,3) shaped test set 44

Figure 4.12. Accuracy graph of Experiment I on (300,300,3) shaped test set 44

Figure 4.13. Confusion matrix of Experiment II on (300,300,3) shaped test set 45

Figure 4.14. Loss graph of Experiment III with VGG based weights on the test set . . . 46

Figure 4.15. Accuracy graph of Experiment III with VGG based weights on the test set
 . 46

Figure 4.16. Confusion matrix of Experiment III with VGG based weights on the test set
 . 47

Figure 4.17. Loss graph of Experiment III with fine-tuned weights on the test set 49

Figure 4.18. Accuracy graph of Experiment III with fine-tuned weights on the test set 49

Figure 4.19. Confusion matrix of Experiment III with fine-tuned weights on the test set
 . 50

 x

LIST OF TABLES

Page

Table 3.1. Class distribution of the dataset . 24

Table 3.2. Inner distribution of the other class in the dataset . 24

Table 4.1. Comparison of the experimental results . 37

Table 4.2. True decisions on our fine-grained dataset . 51

Table 4.3. False decisions on our fine-grained dataset . 52

Table 4.4. True decisions on the test videos . 53

Table 4.5. False decisions on the test videos . 53

1 INTRODUCTION

Vehicle make-model classification and detection have become one of the most significant

subjects in intelligent transportation systems. There are many studies on this topic with

different approaches. The very first studies focus on understanding the existence of a

vehicle (Gupte et al. 2002). Some studies only focus on classification of vehicle type

(Buch 2010). Some other studies imply several feature extraction to recognize the logo of

the vehicle for the classification of vehicle make (Singh 2012). The other studies focus

on vehicle make-model classification by using a conventional method like Haar cascades

(Baran et al. 2015). However, it is computationally costly and not suitable for real-time

cases. There are also studies that use deep learning with various degree for vehicle make-

model classification (Tafazzoli et al. 2017; Zhou and Cheung 2016; Liu 2016). This thesis

proposes a deep learning approach to vehicles classification and detection by handling

some principal lacks of previous studies. The first issue is related with the dataset which

corresponding to the number of images per class, the types of the images, and annotation

methods. The second issue is related to reach high accuracy results regarding classification

and detection. The third issue is relevant to turn these studies into practice in such a way

that can be implied on a use case.

Foremost, the number of available datasets which include various vehicles are quite

limited. There are two common open-source datasets which are called the Stanford Cars

dataset (Yang et al. 2015) and the Comprehensive Car (Krause et al. 2015) dataset. They

mainly contain fewer images per class and don’t include widely known vehicles especially

for many countries. In this thesis, Turkey-specific dataset has been created to address

this subject. The dataset is generated by gathering the images via online sources such as

vehicle marketplace websites. It is developed a script to use it as a web crawler to pick

the photos. Thus, it is formed a fine-grained dataset. Besides, the process of annotation

of the dataset is also an important subject. Since it is generally worked on a vast dataset

in deep learning, making all annotations in manual could take a substantial amount of

time. For example, three million images should be annotated manually in some studies

1

(Dehghan et al. 2017). Instead of annotating manually, a method like Amazon Mechanical

Turk could be used to save time. However, it could be a costly choice when the dataset

includes a significant amount of data. In this thesis, Algorithm 3.1 is followed to make the

annotation process in a semi-autonomous way. Thus, the time and the computation cost

are reduced for annotation.

Moreover, plenty of similar studies implement only CNN based architectures (Simonyan

and Zisserman 2014) for vehicle make-model classification (Dehghan et al. 2017). How-

ever, it is seen that reaching high classification accuracy results is still an issue. This

thesis performs three different experiments to examine and solve the issue of reaching

high accuracy using our dataset. In the first experiment, a Residual Network (ResNet)

(He et al. 2015) based model is implemented to compare with the other two pipelines.

This experiment refers to a classical way to approach the problems. Normalization and

data-augmentation processes are applied to the dataset. Then, the images are fed into

a ResNet model for classification. This pipeline is called Experiment I. In the second

pipeline, the vehicles are detected by an SSD (Liu et al. 2015) model. This model is

pre-trained on Microsoft Common Objects in Context (MS COCO) (Lin et al. 2014) and

PASCAL Visual Object Classes (VOC) (Everingham et al. 2015) datasets. The detected

vehicles are sent through the same pre-processing methods. They are fed into the same

ResNet model for classification. We call it Experiment II. It is shown that Experiment II

reaches a higher classification accuracy result than Experiment I. Next, the coordinates

of detected vehicles are selected as GTBB of the images in Experiment III according to

Algorithm 3.1. The weights of the SSD model are fine-tuned on our dataset. When it is

compared with the Experiment I, it is obtained a reasonably close classification accuracy

result in Experiment III. It should be noted that it is reached this score without possessing

GTBB of the images which don’t have a perfect shape.

Furthermore, it is proposed an application to use our make & model classification methods

on a use case. The use case is related to the detection of an authorized vehicle. Plenty

of researches address the topic of reading & recognizing the license plates (Du et al.

2013; Chang et al. 2004). However, there are some moments that detection of license

2

plate number of a vehicle may not help to catch the illicit vehicle. For instance, if the

detected license plate is recurrent, it is hard to define which car is unauthorized especially

in urgent cases. With this motivation, the proposed make & model classification methods

are suggested to combine with detecting the license plate to catch the unlicensed vehicle.

In this use case, it is assumed that license plates are readable. Reading and recognizing

the license plates are out of the scope of this thesis. Instead, an open source project is used

for implementation of reading the license plates (Dahms 2016).

The rest of the thesis is organized as follows. Section 2 introduces the materials and

methods that this research contains. It first points out what it is a neural network and

how it is evolved to the convolutional networks. Then, it gives details corresponding

to classification and detection which are used in the experiments. Section 3 provides

all the details about the experimental setup to implement the experiments. It includes

data generation, annotation, testing models, classification and detection architectures

respectively. Section 4 discusses the results of the experiments. Section 5 presents the

discussion and conclusion. It also refers to future studies.

3

2 THEORETICAL FUNDAMENTALS

2.1 Machine Learning

Artificial Intelligence (AI) is first introduced around 1950’s by John McCarthy. It aims

to have machines which can imitate what the human mind ordinarily conducts. There

are mainly two different concepts about AI. First is General AI, also known as human-

level AI. It refers to a machine that can perceive the world and reason its environment

as a human does. Second is Narrow AI. This work only aims to focus on the second

concept which refers that machines can imitate particular focused areas in which a human

does. Machine Learning (ML) algorithms are introduced to make those concepts happen.

Machine learning includes a vast amount of approaches like Bayesian networks, decision

tree learning, clustering, deep learning, etc (Mitchell 1997). Figure 2.1 shows how Deep

Learning (DL), ML and AI are correlated with each other. As a conclusion, it is stated

that deep learning is a branch of machine learning to reach several artificial intelligence

concepts. In this thesis, DL approach is chosen for various reasons.

Figure 2.1. The difference among AI, ML, and DL (Goodfellow et al. 2016)

DL could help to boost the performance when the given data is vast. Since this thesis aims

to continue to extend its dataset, increase to performance, and widen the applications on

the use cases; deep learning is chosen for vehicle make and model classification tasks.

Figure 2.2 shows the performance benchmark of various neural network models.

4

Figure 2.2. Performance comparison between deep learning and other neural networks

(Ng 2017)

2.2 Neural Networks

DL uses Artificial Neural Networks (ANN) to simulate what a real neural network in a

brain does. Figure 2.3 shows how a biological neural network works.

(a) A biological neuron (b) The connection between the two neurons

Figure 2.3. Biological neurons (Kriesel 2007)

It starts with the smallest node, an artificial neuron which is also called perceptron as

shown in Figure 2.4. A perceptron includes a sum function to sum over all inputs or

outputs of other nodes. It acts as a transfer function. Then, an activation function is

implemented to keep non-linearity for further layers.

5

According to the activation function, an output is sent to other nodes. The output of a

perceptron can be shown in Equation 2.1.

Figure 2.4. A perceptron (Nielsen 2015)

output =

0 if F
�

∑N
i=0 wixi +b

�
≤ threshold

1 if F
�

∑N
i=0 wixi +b

�
> threshold

(2.1)

Many neurons variously connect with each other and form a multilayer neural network

which is shown as in Figure 2.5. In this example, it includes five perceptrons as an input.

It has two hidden layers with three and four perceptrons respectively. It contains an output

layer at the end. As a convention, input layer isn’t added for counting the layers of the

network. Thus, it can be said that this network is a three-layer neural network.

Figure 2.5. The architecture of a basic neural network

6

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are generally used in computer vision related

tasks and consist of various processes. Firstly, the main advantages and the reasons to use

are explained. Then, the processes of CNN are introduced such as convolution, max-pool,

etc. Figure 2.6 demonstrates the architecture of LeNet (LeCun et al. 1998) which is known

as the first CNN model. The input shape is shown as 28×28×6. In this notation; first

value refers to the width of a filter, second value refers to the height of the filter, and third

value refers to the depth which means to the filter number.

Figure 2.6. A convolutional neural network, LeNet architecture (LeCun and Bengio

1998)

There are two significant advantages of a CNN model. The first one is reducing to the

parameters of the filters dramatically which are needed to be learned. When there are

lots of parameters to learn and needing plenty of neurons, lots of problems could start to

occur. If there is an image with high resolution as an input, it causes some million value

referring to the pixels. It would need a very deep fully connected layers which may lead

to over-fitting and requiring too much computational power. However, CNNs can reduce

the probability of over-fitting and save computation power, especially in computer vision

7

related tasks.

Total parameters are calculated by using standard neural networks and by using CNN

based model respectively to observe the differences. They are both calculated only for one

layer. Equation 2.2 shows the output when it is used a classical neural network instead of

using CNN. It would become;

of Total Parameters =(filter_height×filter_width×filter_depth + 1)×

(new_height×new_width×filter_number)
(2.2)

However; Equation 2.3 shows the output when it is used CNN. It dramatically reduces the

number of parameters.

of Total Parameters =(filter_height×filter_width×filter_depth+1)×

filter_number
(2.3)

The second main advantage is parameter sharing. With CNN, parameters that it is learned

are shared through to next layer as input. Therefore the same weights are reused through

the layer which means it is no need to learn it again in the layers. By that, further layers

can learn more complex feature and patterns.

2.3.1 Convolution

In CNN, some filters act as learning parameters like w parameter in a multilayer neural

network. They are mainly used in convolution processes. CNN is based on the processes

of convolutions through the layers. Figure 2.7 demonstrates how convolution happens. In

this example, the input is represented as a 5×5 matrix of values. There is a filter with the

shape of 3×3. The filter is slid around the image in every position. Thus, the values of

the filter are multiplied by the values of the image in that window size. It occurs a single

number which represents all the values of the image in that window size.

8

Filters are also called as the kernel. They are generally square sized. In this example,

the window slides by one pixel. It means the stride value equals 1. This value can be

changed. Moreover, zero-padding is usually implemented around the image. It could keep

the values of the corner and prevents the center-side values from becoming more dominant

in the representation.

Figure 2.7. Convolution process

Convolutions and convolutional layers are used for filtering. Filters are updated continu-

ously and learned by the model. They are the learned parameters like w in standard neural

networks. They keep the patterns of an image. Various filters help the model to predict the

content of an image. The output of the convolution generally has a smaller size than the

original image. Equation 2.4 shows how to calculate the new size of a feature after the

convolution process.

new_height =(input_height−filter_height+2×P)/S+1

new_width =(input_width−filter_width+2×P)/S+1
(2.4)

2.3.2 Max pooling

Max pooling works like convolution. There is a square size window which can be called

as a kernel. It slides over the image. However, the function isn’t linear. It takes the highest

9

value within the window. This value represents all values of the window. The main reason

to use it to reduce parameters while trying to keep the most important values of an image.

The process is shown in Figure 2.8 with the stride of 2.

Figure 2.8. Max pooling process with the stride of 2

There is also another pooling method called Average Pooling. It takes the average of the

window instead of taking the maximum value.

2.3.3 Hyper-parameters

A network model contains lots of hyper-parameters. These parameters can’t be directly

learned by training. Batch size, numbers of the epoch, number of hidden layers, size of

filters, choosing activation functions, learning rates are some of the hyper-parameters

which are needed be tuned throughout many iterations.

(a) Big learning rate (b) Small learning rate

Figure 2.9. Choosing the learning rate

10

For instance, choosing a learning rate is quite substantial. If it is picked a learning rate

with a high number, it can overshoot the global minimum as shown in Figure 2.9. It may

also take a long time to reach to the global minimum if it is selected a learning rate with a

quite low number. For those reasons, various methods have been developed. Adaptive

Moment Estimation (Adam) optimizer can be used as one of the best alternatives to change

the learning rate adaptively. It is introduced in the following sections.

2.3.4 Activation functions

Another hyper-parameter is choosing the activation functions. It uses a function to pass

through a value which maps the value into a specific range. There are some alternatives;

however, Rectified Linear Unit ReLU is mainly preferred as a default activation function

on many pieces of research.

(a) Sigmoid function [taken from (Wikipedia

2018)]

(b) ReLU function

Figure 2.10. Activation functions

Figure 2.10 and Equation 2.5 shows the function of ReLU. If the number is negative, the

output becomes a zero. Otherwise, the number keeps its value in the output.

A(x) = max(0,x) (2.5)

11

One of the main advantages is to prevent gradient vanishing. The other one is that it

provides sparsity when the value lower than zero. It is computationally cheap to use

the ReLU. It is one of the commonly used activation functions in deep learning. Its

value doesn’t entirely increase or decrease because values of itself and its derivative is

monotonic. Sigmoid function can be shown in Equation 2.6. It isn’t preferred since it

tends to vanish the gradients when the input gets higher.

A(x) =
1

1+ e−x (2.6)

Softmax is a generalization of the Sigmoid activation function for multicategories. It

takes the output of the last fully connected layer as input and maps them into probabilities

in such a way that its sum equals to one. Thus, Softmax normalizes the outputs and make

their sum equals 1. Especially for image classification; Softmax classifier can be used

with the help of CNN. Figure 2.11 displays the expression.

(a) CNN model to Softmax classifier (b) Softmax probability mapping

Figure 2.11. Softmax classifier

Equation 2.7 gives the formula of Softmax function. While K refers to the total number of

categories, j refers to only a single number among the categories.

12

A(x j) =
ex j

∑K
k=1 exk

(2.7)

2.3.5 Zero padding

Figure 2.12 shows the implementation of zero-padding with size of two. Zero padding

pads the input volume with zeros around the border. After implementing zero padding of

two to the shape of 32×32×3, outcome reaches the shape of 36×36×3. It is one of the

hyper-parameters of a network. By using this, input values of an image can be preserved

with a higher chance. More importantly, it can be used to keep the height and width of an

input same with the height and width of an output.

Figure 2.12. Zero padding

2.3.6 Dropout

Dropout (Srivastava et al. 2014) is one of the most used regularization techniques in deep

learning. It prevents the model from over-fitting. It is first chosen as a probability value

to keep the nodes. At each epoch in training, nodes are dropped out of the network with

the probability of (1− p). All connections that come to these nodes or go out from these

nodes are also removed. In other words, nodes remain the same with a probability of p in

every layer. In training, it is used with a certain probability value which generally equals

13

to 0.5. However, the threshold should equal to 1 in testing. Figure 2.13 demonstrates the

implementation of dropout.

(a) In training (b) In test

Figure 2.13. Using Dropout in a model

Dropout encourages a model to become more robust by learning features from random

situations. Dropout also occurs worse training loss error. However, it could also happen

by using other regularization techniques. It is a trade-off between training performance

and gaining more generalization. It is mainly used on the fully connected layers. It also

may be used after the pooling layers.

2.3.7 Batch normalization

Typically, initial parameters are created and normalized so that it has zero mean and unit

variance. However, training starts and the parameters are updated with a different range.

Parameters which are created in this way occur to disrupt normalization. Consequently,

the speed of training slows down and reaching to the global minimum gets harder. What

batch normalization does is to re-normalize the weights for all batches in the layers in

forward-propagation. Therefore, the combination of a bunch contains zero mean and

unit variance. It also normalizes the updated weights after back-propagation. It deals

with the outcome of high activation functions so that it reduces over-fitting. With the

help of batch normalization, the learning rates with the high numbers can be used more

commonly. Consequently, batch normalization allows the network to converge faster.

14

Besides the model becomes more robust for initializing the parameters. Thus, it helps

with regularization (Ioffe and Szegedy 2015).

2.3.8 Adaptive moment estimation (Adam) optimizer

Choosing the learning rate is one of the vital hyper-parameters. Adam optimizer (Kingma

and Ba 2014) is a method that computes adaptive learning rates for each parameter so that

it changes throughout the training. Its power comes from using insights from Root Mean

Square Propagation (RMSProp) optimizer and Momentum optimizer. RMSProp stores

an exponentially decaying average of past squared gradients like vt . Momentum keeps

an exponentially decaying average of past gradients like mt . Adam optimizer combines

them. The decaying averages of past and past squared gradients mt and vt are computed

in Equation 2.8. mt is exponentially weighted moving average. β1 and β2 help to define

the number of average to calculate. gt is the value that comes from gradient descent. The

initial values of mt and vt are equal to zero. Subscript t stands for time.

mt =β1mt−1 +(1−β1)gt

vt =β2vt−1 +(1−β2)g2
t

(2.8)

Values of mt and vt are needed to be tuned for bias correction as shown in Figure 2.9. It

helps to get a better estimation result in the initial phases of the learning. m̂t and v̂t refer

to the corrected values.

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

(2.9)

Equation 2.10 shows the main formula of Adam optimizer. This formula also comes

from RMSProp optimizer. ε prevents the errors from dividing by zero. α refers to a

15

learning-rate value. In original paper, the authors propose default values of 0.9 for β1,

0.999 for β2, and 10−8 for ε . It generally outperform than other adaptive learning-method

algorithms.

θt+1 = θt −
αm̂t√
v̂t + ε

(2.10)

2.3.9 Categorical cross entropy loss

It is needed to have a loss of function to calculate the performance of the model for

generalizing and prediction. Categorical cross entropy is one the most preferred loss

functions. It is quite similar to Binary cross entropy. In Equation 2.11, J stands for the

number of classes, N stands for the number of samples, ŷ refers to the prediction of the

model.

L (w) =− 1
N

N

∑
i=0

J

∑
j=0

yi j.log(ŷi j)+(1− yi j).log(1− ŷi j) (2.11)

Cross-entropy, in general, provides the model to measure the difference between predicted

probabilities ŷ and labels y. The model tries to change its parameters to decrease the

cross-entropy loss. Minimizing cross-entropy loss allows the model to reduce the negative

log-likelihood of the data. This loss function could work together with Softmax activation

function which is introduced in the previous sections.

2.4 Residual Networks (ResNet)

From LeNet (LeCun et al. 1998) to ResNet (He et al. 2015) model, there has been many

models that are proposed. They mainly suggest the changes in hyper-parameters like

filter size, number of hidden layers, convolution, max-pooling, average-pooling, etc. The

original paper of ResNet model shows that after reaching a significant amount of layers,

16

the training error starts to increase. Although theoretically is not expected, it happens

because of vanished or exploded gradients. As it is shown in Figure 2.14, the outputs of

an activation function in a layer are multiplied by weights which connected to the next

layer. Calculating this weights in a row in multiple time can cause those problems. For

example, after random initialization of weights, some weights in a layer could have a

large number. When multiplying this weight with other weights could cause a number

to explode exponentially. The same could happen in vanishing which refers to reaching

zero.

(a) Plain Network (b) ResNet

Figure 2.14. Training error performance between a plain network and a ResNet model

(Ng 2017)

However, ResNet proposes a substantial change in logic adding by special connection

among several layers. This model solves the problem of vanishing or exploding gradients.

For instance, it remembers the input weights even if it vanishes or explodes on the next

layers as shown in Figure 2.15. The main reason for this is because of the short-cut branch.

It sums up with the weights which are applied to some layers. In the case of vanishing

or exploding the weights of the main branch, it can still remember the weights that come

from short-cut branch. ResNet is the winner of ImageNet Large Scale Visual Recognition

Competition (ILSVRC) 2015. It mainly uses batch normalization. Identity branch is also

added after original work by same author (He et al. 2016). In the original paper of ResNet,

it includes 150 layers in it.

17

Figure 2.15. A ResNet block (He et al. 2015)

In this thesis, some tests are made to choose the number of the layer in the custom ResNet

model. According to the practical results, a custom ResNet model with 30 layers is chosen.

It is introduced in the following sections.

2.5 Single Shot MultiBox Detection (SSD)

Conventionally detection is made by the classification approach. However, this approach

occurs some crucial problems. For instance, predicted bounding boxes generally don’t

fit the position of an object if the ideal bounding box is not a square. As an alternative

solution, the detection is handled by the regression approach. Then, SSD is introduced. A

custom multi-box bounding box system is developed in the SSD model using the previous

works (Szegedy et al. 2014). In SSD, there are manually chosen default bounding boxes

at various dimensions and aspect ratios. Those are associated with every feature map cell.

By that, without a need for pre-training for the default box creation, SSD could become

robust for generalizing of any input.

18

(a) Image with GT

boxes
(b) 8×8 feature map (c) 4×4 feature map

Figure 2.16. SSD framework [taken from (Liu et al. 2015)]

In traditional methods, SSD has its unique bounding box regression technique by using

the multi-scale convolutional multi-box method (Szegedy et al. 2014). It includes many

grid cells which can detect only one object in it. Every cell has default boxes with

different aspect ratios, which can also be called anchor boxes, to detect the objects. In

the figure that presented above, while cat matches with the default box in 8×8 feature

map, dog matches with the default box in 4×4 feature map. The number of values can be

calculated to pair with an object. Equation 2.12 shows the loss function which contains

three parameters.

mloss = clos +α × lloss (2.12)

clos refers to confidence loss. While it is used to categorical cross-entropy in the previous

multi-box method, a simple softmax loss function is used to compute this loss in SSD.

It produces a score for every object according to their chance of existence. llos refers to

location loss. While it is used to L2-norm in the previous multi-box method, a smooth

L1-norm is used to compute this loss in SSD. Based on ground truth bounding boxes

it calculates the closeness of predicted bounding boxes. L2-norm could help to predict

perfectly shaped ground truth boxes. However, it is a trade-off between predicting

excellently and performance. To balance the outcome of location loss α term is used. SSD

19

architecture contains 8732 detections for every class at different feature map cell. Thus,

the system becomes robust for detecting a various size of objects at multiple scales.

Intersection over Union is used to calculate the ratio between default boxes and the

predictions. Default boxes are fixed size bounding boxes which roughly match the shape

of the original ground truth boxes. It can also be used between ground truth bounding

boxes and the predictions. Generally, default boxes are selected if IoU is greater than 0.5.

It is shown in Figure 2.17.

Figure 2.17. Intersection over union

Non-Maximum Suppression (NMS) is one of the helpful methods which is used in SSD

(Hosang et al. 2017).

Algorithm 2.1 Non-Maximum Suppression
Require: IoU_threshold ← 0.5,

probability_threshold_of_a_class ← 0.6,
for every feature cell do

make a prediction;
if probability_of_a_class of feature cell ≤ probability_threshold_of_a_class then
get rid of the boxes;

end if
end for
choose the box with the largest probability_of_a_class;
if IoU of chosen box ≥ IoU_threshold then

get rid of the boxes;
end if

20

One of the problems of object detection is that the algorithm could make multiple detec-

tions of the same object. Algorithm 2.1 ensure that Non-Maximum Suppression detects

each object only once. In other words, the algorithm outputs the maximal probabilities of

classification. However, it suppresses the close-by one that is non-maximal. There are

two thresholds to filter bounding boxes that refer to the same object and select only the

one which is most relevant. Confidence loss threshold eliminates the ones below than that

score. This threshold could be 0.6 for instance. IoU threshold to eliminate the highest

confidence score with others.

21

3 MATERIALS and METHODS

This section explains the methods that have been used in this thesis. They consist of

the details corresponding to tools, environment, dataset generation, data annotation, pre-

processing, classification model, detection model, experiments and proposed application.

All the developments are made in Image Processing Laboratory and Computer Laboratory

of the Computer Engineering Department at Uludağ University. Many computers are

used simultaneously in the laboratories. The Graphics Processing Unit (GPU) card that

is used is NVIDIA GeForce GT 730 with 2GB Random Access Memory (RAM). As a

primary operating system, it is used Ubuntu 16.04LTS. Besides, cloud sources of Amazon

and Google are also used for training. We use NVIDIA GRID K520 as a GPU with

4GB RAM in Amazon Web Service. We prefer to use NVIDIA Tesla K80 as GPU with

around 12GB RAM providing by Google Colab since the training of SSD need potent

computations. Moreover, Anaconda and Docker are used as virtual environments and

containers respectively. Development of this thesis is written based on Python v3.5, and it

is used Jupyter notebook as a development environment. Figure 3.1 shows how Jupyter

notebook system works.

Figure 3.1. Jupyter notebook architecture

Open Source Computer Vision Library (OpenCV) version 3 is used for image processing,

especially in data manipulation and augmentation purposes. It is worked with primarily

TensorFlow version 1.3.0 and sometimes Keras version 2.1.3 as ML libraries. It supports

to use GPU using Compute Unified Device Architecture (CUDA) acceleration. Such

libraries are used for the development like scikit-learn, matplotlib, and numpy, etc.

22

3.1 Dataset Generation

This part explains the details about how all the images are gathered and become a dataset.

All experiments are applied in this dataset. Thus, this dataset has a significant effect on

the results. Images are collected through online sources using a script that acts as a web

crawler. It is used some focused keywords to collect them class by class. Then, the ones

that have inappropriate features such as showing the inside of the car, containing not the

foremost part of the vehicle are eliminated. After collecting them class by class, they are

manually labeled. The process of labeling manually takes quite a long time since it isn’t

used a method like Amazon Mechanical Turk.

Table 3.1 shows the distribution of the images in the dataset which includes seven classes.

First six classes indicate Volkswagen Passat 1.6 TDi BlueMotion Comfortline 2015,

Renault Fluence 1.5 dCi Touch 2016, Fiat Linea 1.3 Multijet Active Plus 2013, Volkswagen

Polo 1.6 1999, Renault R12 Toros 2000, Fiat Dogan SLX 1996. Classes have numbers of

images respectively 4024, 4293, 4234, 3208, 3783, 4183, 4162. Seventh class is composed

of seven different make and models, except then the first six classes, for representing other

cars. The shapes of the images vary from 300 to 600 pixels in both height and width.

The motivation to select those make & models are related to statistical works of Turkish

Statistical Institute (TurkStat) (Institute 2017). The Institute monthly states the number

of vehicle brands that are registered to the traffic in that specific month in Turkey. It is

made research for the reports released within the last two years. Finally, it is sorted by the

number of vehicles that brands have.

Since there are limited time and human resources, it is needed to be chosen only some

brands. Volkswagen is selected since it is on the top of the list that it is formed according

to reports of TurkStat. Taking into account that Renault and Fiat have a manufacturing

company in Bursa, where the Uludağ University is located, and they are also in the top

5th list; they are chosen to the dataset. It is also needed to indicate that Fiat Dogan SLX

and Renault R12 Toros are produced in Turkey and mainly used in the country. So, they

are mostly local models of their makes.

23

The statistical data of TurkStat is also taken into account for forming seventh class. It

stands for make & models of other vehicle brands except than Volkswagen, Renault, and

Fiat; Thus, all of these features make this dataset more country-specific. The dataset

contains 27887 images of the vehicles.

Table 3.1. Class distribution of the dataset

Make Model Year Feature # of Images

Volkswagen Passat 2015 1.6 TDi BlueMotion Comfortline 4024

Renault Fluence 2016 1.5 dCi Touch 4293

Fiat Linea 2013 1.3 Multijet Active Plus 4234

Volkswagen Polo 1999 1.6 3208

Renault Toros 2000 R12 3783

Fiat Dogan 1996 SLX 4183

Other Class 4162

Table 3.2 states the distribution of the seventh class. It is composed of seven different

make & models, except then the first six classes. It refers to the other cars in general.

Table 3.2. Inner distribution of the other class in the dataset

Make Model Year Feature # of Images

Toyota Corolla 2016 1.4 D-4D Advance 663

Volvo S60 2014 1.6 D Premium 707

Peugeot 206 2001 1.4 XR 468

Ford Focus 2017 1.6 TDCi Trend X 693

Mercedes-Benz C 2015 CLA 180d 608

Nissan Micra 2016 1.2 Match 533

Audi A3 Sedan 2017 1.6 TDI 490

24

Data annotation is essential regarding detection purposes. It generally requires lots of

time to be done. Algorithm 3.1 is followed to decrease the annotation time. It defines the

GTBB and classes of the images from the dataset with the help of predicted outcomes of

pre-trained SSD model. In this case, we assume that the images usually include a vehicle

which is larger than a certain size. Annotation takes a work day long when this algorithm

is implemented in our dataset.

Algorithm 3.1 Annotating ground truth bounding boxes and classes
Require: certainSize ← a threshold value,

classId ← zero,
for all images of that class do

read the image;
pass it through the pre-trained SSD to detect only cars;
carSize ← the size of the detected car;
if carSize ≥ certainSize then

classOfDetectedCar ← classId;
else

ask annotator to give a label or delete it;
end if
save the annotation to a .csv file;

end for
increase the classID by one if any and run again;

A script is written to implement this algorithm. The images in dataset stay under the folder

of its related make & model of a class. The script takes only one folder of a class so that

this help for automating. For example, it starts labeling with Fiat Dogan and gives an

input to script assuming that the object as a class of Dogan. If the detected object higher

than a certain threshold, it is accepted as a class automatically which is Fiat Dogan in that

case. If the detected object is not big enough, ask for input the user. There are two main

possible in that case. Firstly user can give a specific input saying this is a class of possible

classes. On the other hand, the user can provide another individual input stating that omit

the object not to save it.

25

3.2 Pre-processing

There are plenty of pre-processing methods to make the data appropriate for the Neural

Network. In this thesis, the data is normalized first. Then it is re-sized by adding

zero padding. More importantly, data augmentation is also implied in it to reduce over-

fitting.

Normalization of data by having zero mean and equal variance is essential. Calculating

the mean and subtracting it per channel for every image serves to center the image at

around zero-mean. By that, each image and feature have a similar range, so that prevents

the gradients from exploding or shrinking. Since the gradient has a uniform distribution for

each channel, it helps to learn faster. It also makes the model more robust on illumination

changes. Equation 3.1 represents the Figure 3.2.

x� =
x−µ
255

(3.1)

In the thesis after calculating the mean of all channels, it is subtracted from the value.

Since every pixel has ranged from 0 to 255, it is re-scaled to 0 between 1 by dividing

255.

(a) Original data (b) Zero-centered data (c) Normalized data

Figure 3.2. Normalization of the data (Fei-Fei Li 2017)

26

Data Augmentation

Because the dataset doesn’t include a vast amount of data, it is necessary to make data

augmentation with specific techniques. The data augmentation could prevent the model

from over-fitting and encourage the model for performing a better generalization. Since

the model could deal with various type of data, this process is quite crucial for the model

to achieve its best in real-world problems.

(a) Gauss Noise (b) Horizontally Flip

(c) Zoom In (d) Gauss Blur

Figure 3.3. Some data augmentation techniques

Figure 3.3 shows some of the methods of the data augmentation. In the first example, it is

added Gauss noise in such a way that it has zero mean and its sigma and variance equals 1.

It is hard to understand by only observing; however, its pixels are slightly changed. In the

second sample, it is merely flipped horizontally. In the third example, it is zoomed in with

27

an absolute value. It is vital to keep the aspect ratio same here. On the last instance, it is

added Gaussian Blur to simulate focusing problems of the cameras. OpenCV is used for

implementation of data augmentation techniques.

Padding and Resize

Maintaining aspect ratio of the images is crucial when it comes to applying the result in

real-world cases. The images in our dataset generally have rectangular shaped images.

While their heights vary from 300 to 400 pixels, their widths range from 500 to 600 pixels.

It is crucial to make them square size to make convolutions more efficient. The SSD model

requires (300,300,3) shape images. Therefore, it is needed to add padding and re-sizing to

the desired shape.

In our algorithm, it is first made a comparison to find whether height or width is smaller

than the other. After noticing the smaller one, it is added the zero padding to that side so

that the image becomes a shape of a square. Then, it is re-sized to the desired size. In this

work, the images are all re-sized it to the form of (300, 300, 3) for all experiments so that

it could be able to see the differences among all different models. Figure 3.4 displays a

sample image from the dataset after adding padding on it.

Figure 3.4. Adding zero-padding to an image

28

3.3 Vehicle Classification and Detection

Figure 3.5 gives general intuition about linear and non-linear classification which can

be used in object classification tasks. In this study, non-linear classification is made by

Softmax layer which is introduced in the previous sections.

(a) Linearly separable (b) Linearly non-separable

Figure 3.5. Linear and non-linear classification

Figure 3.6 demonstrate the differences among classification, localization, and detection.

Classification represents whether if an image contains a certain object in it at somewhere.

In the context of the thesis, it can be said that image classification is responsible for

declaring whether the image contains a certain model of a vehicle. However, classification

with localization is not only responsible for declaring if the image contains a specific

model of a vehicle but also is responsible for drawing a bounding box around the position

of it in the image. In other words, it is responsible for figuring out where the object is

located in the picture. But, this can happen only for one object in an image. Detection is

defined as having multiple objects which are implemented classification with localization

on them. Therefore, it might be various objects in the picture, and it can be detected all.

As a result, classification and classification with localization problems have one object in

the middle of the image which is supposed to be recognized. In contrast, the detection

problem deals with the multiple objects of different categories within a single image.

29

Figure 3.6. Differences among classification, classification with

localization and detection

The output of classification could be shown in Equation 3.2 corresponding to the context

of the thesis. As an outcome, every class has its probability. The sum of the probabilities

equals one when applying the softmax activation function to them. class stands for one of

the seven categories which are introduced in Table 3.1. It is assumed that the image only

has one object in the picture. prob shows how accurate the prediction of a class object.

Probability can be in a range between 0 and 1.

ypredict =
�
[class1 : prob1], [class2 : prob2], ..., [class7 : prob7]

�
(3.2)

30

The output of classification with localization is shown in Equation 3.3. xmin and ymin refer

to the most up-left point meaning to (0,0). xmax and ymax refer to the most down-right

point meaning to their max pixels.

ypredict =
�

prob, class, xmin, ymin, xmax, ymax

�
(3.3)

Figure 3.7. Showing a bounding box

In detection, the models generally accept the images with GTBB in different notation.

Besides, the image can contain multiple objects. Detection is just multiple ways of

classification with localization. The output of detection is shown in Equation 3.4.

ypredict =

��
prob,class,bx,by,bh,bw

�
� �� �

object 1

, [...]����
object n

�
(3.4)

bx and by represent the middle points of the car, as well as height bh and width bw of

the bounding box: Values of bh, bw can vary from 0 to 300 referring to pixels. In the

thesis, a custom designed ResNet model is used which is shown in Figure 3.8. It has

30 layers and is used in experiments of the thesis. Experimental details are introduced

in the following sections. This model contains trainable parameters with the number of

31

1132775. In convolutional sections of Identical block implement (1,1) as a stride value.

Therefore, the shapes of features preserve their size of heights and widths. The filter sizes

also preserve their values. Equation 3.5 shows the output of the block.

yidentity_block = F(x,Wi)+ x (3.5)

(a) Convolutional block

(b) Identical block

(c) Main ResNet model

Figure 3.8. Custom ResNet architecture

32

The first section in the convolutional block has a stride of (2,2). Shortcut section contains

the same stride value as well. Other sections include a stride of (1,1). Moreover, the first

and second section of the main block has the same value of filter size. The third section

on the main block has the equal value of filter size with the shortcut section. Equation 3.6

shows the output of the block.

yconv_block = F(x,Wi)+Wsx . (3.6)

Detection model is shown in Figure 3.9 which shows the architecture of the SSD model.

It contains a series of convolutional blocks. Detections are made on certain layers which

equals to 8732 per class. After predicting these, an NMS method is implemented to have

the most stable outcome.

Figure 3.9. The architecture of SSD Model for Detection

It is originally used the same model with the original paper. The only difference is either

it is used with the custom ResNet model or fine-tuned on our dataset. In this thesis, an

implementation of the original paper is used for detection purposes (Ferrari 2017).

3.4 An application

This thesis also proposes an application which could detect the fraud on the license plates

of the vehicles. The process of the application can be explained as follows. At first,

reading and recognizing the license plate numbers is done by an open source project

(Dahms 2016). Simultaneously, the proposed make & model classification method is used

33

to predict the class of the vehicle. Both of them are transferred to the middleware. The

middleware makes a pair of them and assigns them to a dictionary value. It is composed

of a key value. As a result, a comparison is made with the contents of the dataset. In this

application, the dataset is set manually at first. Every license plate number is matched

with the class of a vehicle in the dataset. In this use case, fraud is detected if the license

plate numbers are matched however make & models of a car not. It can be referred that

the license plates are repetitive and the detected vehicle has an unauthorized license plate.

Figure 3.10 explains how it works as a diagram.

Figure 3.10. A use case diagram, Case I: license plates match however models don’t

34

4 RESULTS

Three main experiments are implemented in the thesis. Figure 4.1 demonstrates the

differences among them. They make classifications using a custom ResNet model only, a

pre-trained SSD with the ResNet model and a fine-tuned SSD only respectively. There

is the main difference between Experiment I and II. The model gathers the images, then

implements the pre-processing methods on them in Experiment I. Like it is shown in

previous sections; normalization, zero padding, re-sizing and data augmentation are the

main parts of pre-processing methods. In the pre-processing section, re-sizing to the

shape of (300,300,3) is implemented on the images firstly. Later on, data augmentation

is followed. It consists of flipping, adding Gaussian blur, adding Gaussian noise and

zooming. Finally, the images become ready for being fed into the model for training.

Figure 4.1. Overview of Experiments

The images are processed through an SSD model to only detect vehicles in Experiment

II. The weights of the SSD model firstly pre-trained on MS COCO dataset. Then, they

35

fine-tuned on PASCAL VOC07 & VOC12 dataset. After detecting vehicles, the same

pre-processing methods are implemented on the images of that vehicles. As a result,

the same ResNet model gathers that images for training. Thus, only the vehicles are

given to the model in Experiment II instead of feeding the whole image to the model. In

Experiment III, it is only used in an SSD model. However, the images are labeled with

the help of the detection part of Experiment II. The same GTBB is used for every image.

The same pre-processing methods are applied. This experiment aims to make detection as

well as classification. The results of the experiments are introduced in the experimental

result section.

This section also explains all the results of experiments which have been done on a test

set in our dataset. Table 4.1 introduces all the conclusions of the analyses. Also, loss

graphs, accuracy graphs, and confusion matrices express the detailed results. Besides,

specific outcomes of the implementation of an experiment on test videos are shown.

It is implemented 80%-10%-10% rule on training-validation-test sets distribution in

Experiment I and II. As a GPU power, it is used NVIDIA GT 730 with 2GB RAM for

Experiment I and II. However in Experiment III; it is implemented 80%-20% rule on

training-test sets distribution. As a GPU power, Tesla K80 with the help of Google Colab

is used for Experiment III since it needs a lot more computation than the other experiments.

It is seen in the table that the result of the classical model in Experiment I and the result of

the proposed model in Experiment II reach 91.27% and 95.10% classification accuracy

scores respectively. Since the only difference between Experiment I and II is to have

well-centered detected vehicles, it can be referred that this feature could help to the model

to increase classification accuracy significantly.

Furthermore, it is seen that the result of the proposed model in Experiment III reaches

slightly close to the achievement of the classical model in Experiment I even without

using not perfectly shaped GTBB. Besides, it is also seen that a lot more data is needed

to reach higher classification accuracy results by taking into consideration of train score

in Experiment III. It can be referred from the significant difference between train and

validation score that it is needed more data and a bit of change to extend in the model.

36

Table 4.1. Comparison of the experimental results

Experiment I Experiment II Experiment III

Method ResNet

SSD

+

ResNet

SSD

without

fine-tuning

SSD

with

fine-tuning

Batch Size 32 32

Epoch 128 96 128 96 29 34

Loss Categorical Cross Entropy
Smooth L1 +

Softmax

Image Size 224 300 224 300 300

Train score 0.9692 0.9635 0.9853 0.9836 0.9071 0.8916

Valid score 0.9185 0.9052 0.9394 0.9376
0.9057 0.8852

Test score 0.9239 0.9127 0.9524 0.9510

4.1 Experiment I: Classification by a ResNet Model

The pipeline is implemented with the images which have the shape of (224,224,3) and

(300,300,3) respectively. At first, the experiment is done with the images that have the

shape of (300,300,3) to match the shape with the SSD model in Experiment III. Later, it is

made with the images that have the shape of (224,224,3) to see if re-sizing would hurt the

accuracy. As a result, re-sizing even shows a better result. It means that the model could

obtain the essential features and generalize even if the shape of the image is re-sized to

down. Figure 4.2 and 4.3 show the loss graph and accuracy graph of this experiment with

224×224 sized images. The number of 4 in the epoch line refers to 128 originally. It is

seen that the more accuracy reaches a higher score or loss reaches a lower score, the more

the lines reach to plateau.

37

Figure 4.2. Loss graph of Experiment I on (224,224,3) shaped test set

Figure 4.3. Accuracy graph of Experiment I on (224,224,3) shaped test set

38

Figure 4.4. Confusion matrix of Experiment I on (224,224,3) shaped test set

Figure 4.4 displays the confusion matrix of this experiment. It reaches 93.71% overall

accuracy result on the test set. It also reaches over 90% score for all classes. However,

since the number of images of VW-Polo class is lower than the others in the dataset could

affect the score of VW-Polo class. Figure 4.5 and 4.6 show the loss graph and accuracy

graph of this experiment with 300×300 sized images. Like the result of the previous

experiment, the scores reach a plateau after some epochs.

39

Figure 4.5. Loss graph of Experiment I on (300,300,3) shaped test set

Figure 4.6. Accuracy graph of Experiment I on (300,300,3) shaped test set

Figure 4.7 displays the confusion matrix of this experiment. It reaches 91.27% overall

accuracy result on the test set. It can be seen that it reaches a quite low score to generalize

the other class as well as the class of VW-Polo. Increasing the number in the sub-classes

of the other class could help to increase this particular accuracy.

40

Figure 4.7. Confusion matrix of Experiment I on (300,300,3) shaped test set

4.2 Experiment II: Classification by a ResNet + an SSD Model

This pipeline also is implemented with the images which have the shape of (224,224,3)

and (300,300,3) respectively. Figure 4.8 and 4.9 show the loss graph and accuracy graph

of this experiment with 224×224 sized images. With 224×224 sized images, it is needed

to train with higher epoch number to reach better scores.

41

Figure 4.8. Loss graph of Experiment II on (224,224,3) shaped test set

Figure 4.9. Accuracy graph of Experiment II on (224,224,3) shaped test set

Figure 4.10 displays the confusion matrix of this experiment. It reaches 96.85% overall

accuracy result on the test set.

42

Figure 4.10. Confusion matrix of Experiment II on (224,224,3) shaped test set

Figure 4.11 and 4.12 show the loss graph and accuracy graph of this experiment with

300×300 sized images. With 300×300 sized images, it is not needed to train longer as

224×224 shaped images since the lines reach to the plateau earlier.

43

Figure 4.11. Loss graph of Experiment I on (300,300,3) shaped test set

Figure 4.12. Accuracy graph of Experiment I on (300,300,3) shaped test set

Figure 4.13 displays the confusion matrix of this experiment. It reaches 95.10% overall

accuracy result on the test set. It is also pleasing to see that Experiment II generalizes the

Other Class 10% better. Fiat Polo Class has less amount of images comparing to the other

classes. However, Experiment II also generalizes it 11% better than Experiment I.

44

Figure 4.13. Confusion matrix of Experiment II on (300,300,3) shaped test set

4.3 Experiment III: Detection by an SSD Model

This pipeline is implemented with different weights. In the first experiment, it is only used

with original base pre-trained weights. In the second experiment, it is performed with the

weights which fine-tuned on MS COCO and PASCAL VOC datasets. In Experiment III,

less number of epochs are chosen than the others. It is because of that the SSD model

is originally pre-trained on ImageNet dataset at first by using a Visual Geometry Group

(VGG) based network. Thus, it is no need to be trained more.

45

Figure 4.14 and 4.15 show the loss graph and accuracy graph of this experiment by

without doing Fine-tuning.

Figure 4.14. Loss graph of Experiment III with VGG based weights on the test set

Figure 4.15. Accuracy graph of Experiment III with VGG based weights on the test set

46

It reaches 70.34% detection accuracy result on the test set. However, localization loss is

also included in calculating this accuracy. Thus, the detection result achieves a lower score

than the classification result. Using not perfectly shaped GTBB could occur this result

regarding detection. Even though it detects reasonably well, since the reference value

which is GTBB is not perfectly shaped, such results could happen. Figure 4.16 displays

the confusion matrix of this experiment. It is reached 90.57% Mean Average Precision

(mAP) score on the test set.

Figure 4.16. Confusion matrix of Experiment III with VGG based weights on the test set

47

This confusion matrix shows that Experiment III has almost the same and even better

classification score on certain classes when comparing to Experiment II. It is also be

noted that GTBB of the images is defined by an algorithm which uses a pre-trained SSD

model. Besides, the Other Class reaches the lowest accuracy result for its class. It could

be mean that generalizing vehicles with fewer images in this model is not reasonable when

comparing to Experiment II.

Figure 4.17 and 4.18 show the loss graph and accuracy graph of this experiment by with

doing Fine-tuning. It reaches 73.27% detection accuracy result on the test set. It can be

said that the SSD model achieves approximately 3% higher detection accuracy result by

fine-tuning. The same points can be referred like happened in the previous section by

without fine-tuning. The main difference between this experiment with the previous one is

that the SSD model uses a fine-tuned weights. However, they both also fine-tuned on our

dataset.

Moreover, another important metric is the precision-recall curve to calculate the perfor-

mance of the classification. The results of the precision-recall curve are shown in Appendix

A. It shows the results depending on various IoU’s. Using the values of True Positive

(TP), True Negative (TN), False Positive (FP), False Negative (FN) the precision-recall

values are calculated. The more IoU threshold gets higher, the less result of accuracy in

the model being reached. The precision implies how accurate the predictions of the model.

However, the recall demonstrates how well to find the positive among all objects.

48

Figure 4.17. Loss graph of Experiment III with fine-tuned weights on the test set

Figure 4.18. Accuracy graph of Experiment III with fine-tuned weights on the test set

49

Figure 4.19 displays the confusion matrix of this experiment. It is reached 88.52% mAP

score on the test set using IoU with a threshold of 0,5.

Figure 4.19. Confusion matrix of Experiment III with fine-tuned weights on the test set

Table 4.2 shows some positive results which come from implementation of Experiment III

pipeline with fine-tuned weights our fine-grained dataset. Green lines stand for the correct

predictions. For example, it can be referred from the first sample that the model could

predict the vehicle reasonably well although it doesn’t have perfectly shaped GTBB. The

second, the third, and the fourth image show that it could be crucial for the cars to have a

well-centered position when it is compared with the results of false decisions.

50

Table 4.2. True decisions on our fine-grained dataset

Sample

Predicted Class Renault Fluence Other Class VW. Polo

Probability 1.00 1.00 1.00

Sample

Predicted Class Fiat Dogan Fiat Linea Renault Toros

Probability 1.00 1.00 1.00

Table 4.3 shows some negative results which come from implementation of Experiment

III pipeline with fine-tuned weights our fine-grained dataset. Red lines stand for the false

predictions. For example, it can be referred from the first and second sample that when

the vehicles are in the comparatively minor size in the image, it could occur to be detected

as a false prediction. Reversely; The second, third, fourth image shows that when the

vehicles are relatively large-sized in the photo, it could also cause false detection.

51

Table 4.3. False decisions on our fine-grained dataset

Sample

Correct Class VW. Passat Other Class Other Class

Predicted Class Other Class Fiat Linea VW. Passat

Probability 0.85 0.97 0.86

Sample

Correct Class Renault Fluence Renault Toros Renault Toros

Predicted Class VW. Polo Fiat Linea Fiat Dogan

Probability 0.52 0.58 0.89

The SSD model pipeline is also tested on some commercial videos. It is reached 12 Frame

Per Second (FPS) by using the Tesla K80 as a GPU. When it is compared with the one

which used in the original paper, it is pretty plausible to reach this performance. This

result could be explained because the GPU used in the original document has almost five

times better performance quality than the one is used in this thesis. Thus, this is why it is

approximately five times worse FPS score than the original study on SSD. The outcomes

of the implementation of the pipeline on test videos can be found in the author’s repository.

https://goo.gl/EB6vyF

Table 4.4 and 4.5 also show the certain frames from the test video results. It can be said

that the same reasons for previous false decision table also cause the false decisions in

that case.

52

Table 4.4. True decisions on the test videos

Sample

Predicted Class Fiat Dogan Fiat Dogan Renault Fluence

Probability 1.00 1.00 1.00

Sample

Predicted Class VW. Passat VW. Polo Renault Toros

Probability 1.00 0.97 0.92

Table 4.5. False decisions on the test videos

Sample

Correct Class Fiat Dogan Renault Fluence Renault Fluence

Predicted Class Other Class Fiat Linea Other Class

Probability 0.86 0.97 0.54

Sample

Correct Class Renault Toros Other Class Renault Toros

Predicted Class Fiat Dogan Other Class VW. Polo

Probability 0.92 0.64 0.90

53

5 DISCUSSION AND CONCLUSION

This thesis deals with the problems corresponding to vehicle make & model classification.

To address those problems following actions are taken. First, a fine-grained dataset is

created. Secondly, a model which combines ResNet and SSD is proposed to increase

classification accuracy results. Thirdly, a pre-trained SSD model is used to reach high

classification and detection results by fine-tuning on our dataset. It is used as an algorithm

to automate the annotation process of the vehicles. Lastly, an application is proposed

to detect fraud on unauthorized vehicles in a use case by using proposed classification

models.

The fine-grained dataset is used in all the experiments. It contains a large number of

samples per class which specific to Turkey. However, it took a month to collect them all and

filter them from unwanted samples. Since the collecting data is tremendously expensive,

the scope of this thesis contains only seven classes. For future work, it is planned to

use Amazon Mechanical Turk with the help of a fund. It is also scheduled to have an

agreement with online vehicle marketplaces and even government to extend the dataset.

Moreover, different experiments are made to reach better classification results. The model

which proposed in Experiment II indicates that combining a ResNet based model with an

SSD model could increase the classification score significantly. It is projected to use one

of the recent state-of-art architectures to reach even higher classification accuracy scores

in future.

This thesis also uses a pre-trained SSD based model to detect vehicles. An algorithm is

used for annotation which feeds the model with the images that contain GTBB. It reduces

the annotation time dramatically by trading-off with perfect shaped bounding boxes.

Especially it saves such an amount of time when it is compared with the traditionally

drawing bounding box by a manual. Even though it is not used perfectly shaped GTBB, it

is reached a reasonable classification and detection scores. For future work, a change in

filter sizes of the SSD model architecture could be made to fix false detection results.

54

Finally, the thesis proposes that an implementation of this model on fraud detection

of license plates is considerably possible in certain use cases. The performance of the

application depends on how accurate and fast the detection and the prediction are made.

A demonstration of this proposed application can be found on the author’s repository. The

application could be extended to further use cases for future works. For example, it is quite

hard to detect an unauthorized vehicle when the license plates cannot be recognized to

read. However, security providers easily improve their chance to catch the unapproved cars

by filtering them related to their make & model. After reaching the data from surveillance

cameras which especially recording from highways, the application could be more robust

and reliable to use in the real world.

55

REFERENCES

Anonymous, 2017. Turkish Istatistical Institute, Road motor vehicles data of Turkey,

2017. https://goo.gl/svnzXN-(Date of access: 26 July 2018).

Anonymous, 2018. Sigmoid function. https://goo.gl/5qJofX-(Date of access: 26 July

2018).

Baran, R., Glowacz, A., and Matiolanski, A. 2015. The efficient real and non-real-

time make and model recognition of cars. Multimedia Tools and Applications,

74(12):4269–4288.

Buch, N. E. 2010. Classification of Vehicles for Urban Traffic Scenes. ‘PhD Thesis’,

Kingston University, London, UK.

Chang, S.-L., Chen, L.-S., Chung, Y.-C., and Chen, S.-W. 2004. Automatic license

plate recognition. IEEE Transactions on Intelligent Transportation Systems, 5(1):42–53.

Dahms, C. 2016. Opencv 3 license plate recognition python. https://goo.gl/Wk6GFT-

(Date of access: 26 July 2018).

Dehghan, A., Zain Masood, S., Shu, G., and Ortiz, E. G. 2017. View independent

vehicle make, model and color recognition using convolutional neural network.

arXiv:1702.01721.

Du, S., Ibrahim, M., Shehata, M., and Badawy, W. 2013. Automatic license plate

recognition (alpr): A state-of-the-art review. IEEE Transactions on Circuits and Systems

for Video Technology, 23(2):311–325.

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., and

Zisserman, A. 2015. The pascal visual object classes challenge: A retrospective.

International Journal of Computer Vision, 111(1):98–136.

Fei-Fei Li, Justin Johnson, S. Y. 2017. Lecture 6: Training neural networks, part I

lecture notes. https://goo.gl/AK1MNU-(Date of access: 26 July 2018).

Ferrari, P. 2017. A keras port of single shot multibox detector. https://goo.gl/R9dbuz-

(Date of access: 26 July 2018).

Goodfellow, I., Bengio, Y., and Courville, A. 2016. Deep learning. MIT Press.

http://www.deeplearningbook.org-(Date of access: 26 July 2018).

Gupte, S., Masoud, O., Martin, R. F. K., and Papanikolopoulos, N. P. 2002. Detec-

tion and classification of vehicles. IEEE Transactions on Intelligent Transportation

Systems, 3(1):37–47.

56

He, K., Zhang, X., Ren, S., and Sun, J. 2015. Deep residual learning for image

recognition. arXiv:1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. 2016. Identity mappings in deep residual

networks. arXiv:1603.05027v3.

Hosang, J., Benenson, R., and Schiele, B. 2017. Learning non-maximum suppression.

IEEE Conference on Computer Vision and Pattern Recognition, 21-26 July 2017,

Honolulu, Hawaii.

Ioffe, S. and Szegedy, C. 2015. Batch normalization accelerating deep network training

by reducing internal covariate shift. International Conference on Machine Learning, 6-

11 July 2015, Lille, France.

Kingma, D. P. and Ba, J. 2014. Adam: A method for stochastic optimization.

International Conference on Learning Representations ICLR, 7-9 May 2015, San Diego,

USA.

Krause, J., Jin, H., Yang, J., and Fei-Fei, L. 2015. Fine-grained recognition without

part annotations. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition CVPR, 7-12 June 2015, Boston, USA.

Kriesel, D. 2007. A brief introduction to neural networks.

http://www.dkriesel.com/en/science/neural_networks-(Date of access: 26 July 2018).

LeCun, Y. and Bengio, Y. 1998. The handbook of brain theory and neural networks.

chapter Convolutional Networks for Images, Speech, and Time Series, pp: 255-258.

MIT Press, Cambridge, MA, USA.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning

applied to document recognition. In Proceedings of the IEEE, pp: 2278-2324.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,

Ramanan, D., Zitnick, C. L., and Dollár, P. 2014. Microsoft COCO: Common Objects

in Context. Computer Vision - 12th European Conference, ECCV 2014, 6-12 September

2014, Zurich, Switzerland.

Liu, D. 2016. Monza : Image classification of vehicle make and model using

convolutional neural networks and transfer learning.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C.

2015. SSD: Single shot multiBox detector. Computer Vision - 14th European

Conference, ECCV 2016, 8-16 October 2016, Amsterdam, The Netherlands.

Mitchell, T. M. 1997. Machine Learning. McGraw-Hill, Inc., New York, USA, 414 pp.

Ng, A. 2017. Cs229: Machine learning lecture notes. https://goo.gl/WdmCRk-(Date of

access: 26 July 2018).

57

Nielsen, M. 2015. Neural Networks and Deep Learning. Determination Press.

http://neuralnetworksanddeeplearning.com-(Date of access: 26 July 2018).

Simonyan, K. and Zisserman, A. 2014. Very Deep Convolutional Networks for Large-

Scale Image Recognition. ArXiv:1409.1556.

Singh, R. 2012. Vehicle model identification. ‘Master’s Thesis’, National Institute of

Technology, Rourkela, Odisha, India.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(1):1929–1958.

Szegedy, C., Reed, S., Erhan, D., Anguelov, D., and Ioffe, S. 2014. Scalable, High-

Quality Object Detection. arXiv:1412.1441.

Tafazzoli, F., Frigui, H., and Nishiyama, K. 2017. A large and diverse dataset for

improved vehicle make and model recognition. 2017 IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages 874–881.

Yang, L., Luo, P., Change Loy, C., and Tang, X. 2015. A large-scale car dataset for

fine-grained categorization and verification. 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3973-3981.

Zhou, Y. and Cheung, N.-M. 2016. Vehicle classification using transferable deep

neural network features. CoRR, abs/1601.01145.

58

APPENDICES

APPENDIX 1 Precision-Recall and Average Precision

APPENDIX 2 ResNet Code Block

59

APPENDIX 1

PRECISION-RECALL AND AVERAGE PRECISION

Table 1.1 displays the average precision of all classes for different IoU’s.

Table 1.1. Average precision table

AP
mAP**

Passat Fluence Linea Polo Toros Dogan Other

IoU*

0.5 0.892 0.899 0.926 0.927 0.898 0.904 0.747 0.885

0.6 0.892 0.899 0.926 0.888 0.898 0.902 0.740 0.878

0.7 0.887 0.897 0.891 0.888 0.898 0.898 0.692 0.865

0.8 0.750 0.767 0.864 0.874 0.885 0.726 0.518 0.769

IoU* refers to a parameter of detection. mAP** refers to a parameter of classifica-

tion.

While Figure 1.1 shows the precision-recall curve of other class, Figure 1.2 shows the

precision-recall curve of the first six classes. In the curve, the black line refers to the value

of 0.8 for IoU threshold. The orange line refers to the value of 0.7; the red line refers to

the value of 0.6, and the blue line refers to the value of 0.5 for IoU threshold.

60

Figure 1.1. The precision-recall curve of the other class

61

Figure 1.2. The precision-recall curve of the first six classes

62

APPENDIX 2

RESNET CODE BLOCK

In [1]: ### The Model

def ResNet50(input_shape = (300, 300, 3), classes = 7):

Getting the Input

X_input = Input(input_shape)

Zero-Padding

X = ZeroPadding2D((1, 1))(X_input)

Stage 1

X = Conv2D(16, (3, 3), strides = (2, 2), name = ’conv1’,

kernel_initializer = glorot_uniform(seed=0))(X)

print(’Conv1a: ’ + str(X.shape))

X = BatchNormalization(axis = 3, name = ’bn_conv1’)(X)

X = Activation(’relu’)(X)

Stage 2

X = convolutional_block(X, f = 3, filters = [16, 16, 32],

stage = 2, block=’a’, s = 2)

print(’Convblock2a: ’ + str(X.shape))

X = identity_block(X, 3, [32, 32, 32], stage=2, block=’b’)

print(’Identityblock3b: ’ + str(X.shape))

X = MaxPooling2D(strides=(2, 2))(X)

print(’MaxPool2a: ’ + str(X.shape))

63

In [1]: # Stage 3

X = convolutional_block(X, f = 3, filters = [32, 32, 64],

stage = 3, block=’a’, s = 2)

print(’Convblock3a: ’ + str(X.shape))

X = identity_block(X, 3, [64, 64, 64], stage=3, block=’b’)

print(’Identityblock3b: ’ + str(X.shape))

X = identity_block(X, 3, [64, 64, 64], stage=3, block=’c’)

print(’Identityblock3c: ’ + str(X.shape))

X = MaxPooling2D(strides=(2, 2))(X)

print(’MaxPool3a: ’ + str(X.shape))

Stage 4

X = convolutional_block(X, f = 3, filters = [64, 64, 128],

stage = 4, block=’a’, s = 2)

print(’Convblock4a: ’ + str(X.shape))

X = identity_block(X, 3, [128, 128, 128], stage=4,

block=’b’)

print(’Identityblock4b: ’ + str(X.shape))

Stage 5

X = convolutional_block(X, f = 3, filters = [128, 128,

256], stage = 5, block=’a’, s = 2)

print(’Convblock5a: ’ + str(X.shape))

X = MaxPooling2D(strides=(2, 2))(X)

print(’MaxPool: ’ + str(X.shape))

64

In [1]: # Output layer

X = Flatten()(X)

X = Dense(64)(X)

X = Activation(’relu’)(X)

X = Dropout(0.5)(X)

X = Dense(classes, activation=’softmax’, name=’fc’ +

str(classes), kernel_initializer =

glorot_uniform(seed=0))(X)

Create model

model = Model(inputs = X_input, outputs = X,

name=’ResNet50’)

return model

In [2]: \## Run the model

model = ResNet50(input_shape = (300, 300, 3), classes = 7)

model.compile(optimizer=’adam’,

loss=’categorical_crossentropy’, metrics=[’accuracy’])

65

CURRICULUM VITAE

Full Name : Burak Satar

Birth Place and Date : Bursa, 1991

Languages : Turkish, English, Spanish, Italian

Education Status (Institute and Year)

High school : Bursa Anatolian Girl High School 2009

Bachelor : Uludağ University 2014

Workplaces and Year : TSV Energy 2014-2015

University of Valencia 2016-2017

Turkcell 2017-2018

E-mail : buraksatar@gmail.com

Publications :

Satar, B. 2016. An IoT based bus stop system design. National Conference on Electrical

and Electronics Engineering ELECO, 1-3 December 2016 Bursa, Turkey.

Satar, B. and Dirik, A. E. 2018. Deep learning based vehicle make-model classification.

27th International Conference on Artificial Neural Networks ICANN, 4-7 October 2018,

Rhodes, Greece.

66

