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Abstract: Gaussian mixture models with universal background model (GMM-UBM) and vector 
quantization with universal background model (VQ-UBM) are the two well-known classifiers used for 
speaker verification. Generally, UBM is trained with many hours of speech from a large pool of different 
speakers. In this study, we analyze the effect of data duration used to train UBM on text-independent 
speaker verification performance using GMM-UBM and VQ-UBM modeling techniques. Experiments 
carried out NIST 2002 speaker recognition evaluation (SRE) corpus show that background data duration 
to train UBM has small impact on recognition performance for GMM-UBM and VQ-UBM classifiers. 
  
Keywords: Speaker verification, Gaussian mixture model, Vector Quantization, Universal background 
model 
 

Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi 
 
Özet: Gauss karışım modeli genel arka plan modeli (GKM-GAM) ve vektör nicemleme genel arka plan 
modeli (VN-GAM) konuşmacı doğrulamada sık kullanılan iki yöntemdir. Genellikle GAM modeli fazla 
sayıda farklı konuşmacının bulunduğu bir kümeden seçilen saatlerce uzunluktaki ses işaretleri 
kullanılarak eğitilir. Bu çalışmada, GAM modelinin eğitiminde kullanılan veri miktarının metinden 
bağımsız konuşmacı doğrulama performansına etkisi incelenmektedir. NIST 2002 konuşmacı tanıma 
değerlendirme veritabanı ile GKM-GAM ve VN-GAM yöntemleri kullanılarak yapılan deneysel 
çalışmalar arka plan modelini eğitmek için kullanılan veri miktarının konuşmacı tanıma performansına 
çok fazla etkisinin olmadığı görülmüştür. 
 
Anahtar Kelimeler: Konuşmacı doğrulama, Gauss karışım modeli, Vektör nicemleme, Genel arka plan 
modeli 
 

1. INTRODUCTION 
 

Speaker recognition aims to identify speaker from a given speech signal which refers to 
two different tasks: speaker identification and speaker verification. The goal of speaker 
identification is to determine which one of a known speakers best matches with the input speech 
signal spoken by unknown speaker. This is known as closed-set speaker identification since 
recognizer tries to match input speech to the one speaker known in database.  In speaker 
verification, the goal is to determine whether speaker is who he or she claims to be. This is 
referred to as open-set verification (Kinnunen and Li, 2011).  

                                                            
* Uludağ University, Faculty of Engineering and Architecture, Dept. of Electronic Engineering, Gorukle 16059, 

Bursa. 

   İletişim Yazarı: C. Hanilçi (chanilci@uludag.edu.tr) 

ARAŞTIRMA



Hanilçi, C. and Ertaş, F.: Effects of Background Data Duration on Speaker Verification Performance 

112 

The standard speaker recognition system consists of two phases: training and recognition. 
In training, given a training speech sample of a particular known speaker, the features are 
extracted and then a speaker model is trained using training feature vectors. In recognition step, 
the features are extracted from unknown speaker's test speech sample and a match score is 
computed using each speaker model in the database and the speaker model which produces the 
maximum score determined as the identity of unknown speaker (speaker identification) or if the 
similarity score between the feature vectors and claimed speaker model is above a threshold the 
unknown speaker is accepted (speaker verification).  

In recent studies, generally long speech samples (around 5 minutes long) have been used 
for speaker verification. The most popular speaker recognition corpora NIST speaker 
recognition evaluations (SRE) provide long speech utterances as the core-task. This is probably 
due to the fact that features extracted from a long speech sample captures speaker characteristic 
more than features extracted from short utterances. However, in real-time applications this is 
problematical. In user-convenient applications it is more suitable to ask speaker to produce short 
speech samples. There exists a number of studies which consider speaker recognition using 
short utterances and as expected the recognition performance reduces when short speech 
samples are used.  

Current state-of-the-art speaker recognition systems use universal background model 
(UBM) approach. Since speaker verification is a two-class pattern recognition problem one 
class represents the speaker and the other class represents the alternative speakers. The UBM 
approach models the alternative class which will be described in the next section in detail. UBM 
method has become an integral part of classifiers for speaker verification. Gaussian mixture 
model (GMM) (Reynalds et. al., 2000), vector quantization (VQ) (Hautamaki et. al., 2008), 
GMM supervector (GMM-SVM) (Campbell et. al., 2006), joint factor analysis (JFA) (Kenny et. 
al. 2007) and i-vector (Dehak et. al., 2011) systems all use the UBM method, initially. Thus 
training UBM model is one of the most important part of designing a classifier. Generally UBM 
model is trained using large number of speech samples (mostly a few thousands of speech 
samples) from several speakers which do not exist in training speaker set. However, there is no 
objective measurement to determine the amount of speech samples to train UBM. It is believed 
that the more data used to train UBM, the better recognition performance. In this paper, we 
experimentally analyze the effect of data duration to train UBM on speaker verification 
performance for GMM-UBM and VQ-UBM classifiers.  

 

2.  LIKELIHOOD RATIO DETECTOR FOR SPEAKER VERIFICATION 
 

Given a speech sample X speaker verification is a hypothesis test of two possible 
hypotheses: 

 
	ܵ	speaker	claimed	by	produced	was	ܺ:0ܪ
:1ܪ ܺ	was	not	produced	by	claimed	speaker	ܵ 

 
and the verification system tries to decide which of these two hypotheses is true. When the 
likelihoods of both hypotheses are known, the optimum decision is made by the likelihood ratio 
which is defined as: 
 

଴ሻܪ|ሺܺ݌
ଵሻܪ|ሺܺ݌

൜
൐ ߠ ݐ݌݁ܿܿܣ ଴ܪ
൑ ߠ ݐ݌݁ܿܿܣ ଵܪ

 (1)

 
where ݌ሺܺ|ܪ଴ሻ and ݌ሺܺ|ܪଵሻ are the likelihoods of the hypotheses ܪ଴ and ܪଵ, respectively 
(Reynolds et. al., 2000). ߠ is the decision threshold to accept or reject the hyphothesis ܪ଴. 
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Generally, the logarithm of the likelihood ratio is used which gives the log-likelihood ratio 
(Figure 1) 
 

Λሺܺሻ ൌ log ଴ሻܪ|ሺܺ݌ െ log ଵሻ (2)ܪ|ሺܺ݌

 
Often, ܪ଴ and ܪଵ are represented by models denoted ߣ୦୷୮ and ߣ୦୷୮തതതതതത where they 

characterize the hypothesized speaker S and the alternative hypothesis ܪଵ, respectively. The 
model ߣ୦୷୮ is well defined and estimated using the feature vectors extracted from the training 
speech sample of speaker S. However, ߣ୦୷୮തതതതതത is problematical since it requires to represent the 
entire space of possible alternative speakers except the hypothesized speaker S. The ߣ୦୷୮തതതതതത model 
is generally estimated by pooling a large number of speech samples from several speakers. This 
is known as universal background model (UBM) and is denoted by ߣ୙୆୑ (Reynolds et. al., 
2000). UBM is a large model trained for speaker-independent representation of feature space. 
However, there is no theoretical measure to determine the optimum amount of data used to 
estimate UBM model.  

 

 
 

Figure 1:  
Likelihood Ratio Based Speaker Recognition 

 

3.   UBM BASED RECOGNITION SYSTEMS 
 

Figure 2 shows the general steps of UBM based speaker recognition system. The first step 
of recognition system is pooling large number of speech samples from several speakers and then 
extracting features from these speech samples to train UBM model. When a new speaker is 
enrolled into the system, first the features are extracted from speaker's training speech sample 
and then a speaker model is adapted using training feature vectors and UBM model via 
maximum a Posteriori (MAP) adaptation. In the recognition step, feature vectors are extracted 
from the unknown sample and compared with the model of claimed speaker and UBM model 
and a similarity score is computed as described in the previous section. If the similarity score is 
above the threshold the unknown speaker is accepted or rejected otherwise.  
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Figure 2:  

General speaker recognition system 
 

Gaussian mixture model (GMM) is one of the most popular UBM based modeling 
technique. In GMM, likelihood function is defined as a weighted linear combination of M 
multivariate Gaussian densities 

ሻߣ|ܠሺ݌ ൌ෍ݓ௜݌௜ሺܠሻ

ெ

௜ୀଵ

 (3)

 
where ݓ௜ is the mixture weights constrained as ∑ ௜ݓ ൌ 1ெ

௜ୀଵ  and ݌௜ሺܠሻ is a D-variate 
Gaussian density with the mean vector ࣆ௜ and covariance matrix ઱௜  
 

ሻܠ௜ሺ݌ ൌ
1

ሺ2ߨሻ஽ ଶ⁄ |Σ௜|ଵ ଶ⁄ expሼെ
1
2
ሺܠ െ ௜ሻ்઱௜ࣆ

ିଵሺܠ െ ௜ሻሽ (4)ࣆ

 
Training a UBM model in GMM, consists of estimating the model parameters              

୙୆୑ߣ ൌ ሼݓ௜, ,௜ࣆ ઱௜ሽ௜ୀଵ
ெ  using pooled background feature vectors ܆ ൌ ሼܠଵ, ,ଶܠ … ,  ሽ extracted்ܠ

from speech samples from several speakers by maximizing the objective function. The average 
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log-likelihood is generally used as objective function. The average log-likelihood of X given a 
GMM model ߣ is defined as 

ሻߣ|ୟ୴୥ሺܺܮܮ ൌ
1
ܶ
෍log෍ݓ௜݌௜ሺܠ௧|ࣆ௜, ઱௜ሻ

ெ

௜ୀଵ

்

௧ୀଵ

 (5)

 

the popular expectation maximization (EM) algorithm is used to maximize the log-likelihood 
for a given training data X. To derive a speaker model from the UBM model ߣ୙୆୑ , MAP 
adaptation is used after UBM training. In early studies, it was shown that adapting only mean 
vectors gives better recognition performance than adapting all parameters in UBM (weights, 
mean and covariances). Given speaker training feature vectors ܆ ൌ ሼܠଵ, ,ଶܠ … ,  ሽ and UBM்ܠ
model ߣ௎஻ெ ൌ ሼݓ௜, ,௜ࣆ ઱௜ሽ௜ୀଵ

ெ , the MAP adapted mean vectors of the ith mixture component is 
given by 
 

ෝ௜ࣆ ൌ ሻܠ௜ሺܧ௜ߙ ൅ ሺ1 െ ௜ (6)ࣆ௜ሻߙ

where  

௜ߙ ൌ
݊௜

݊௜ ൅ ݎ
 (7)

 

ሻܠ௜ሺܧ ൌ
1
݊௜
෍Prሺ݅|ܠ௧ሻ ௧ܠ

்

௧ୀଵ

 (8)

Prሺ݅|ܠ௧ሻ ൌ
௧ሻܠሺ݌௜ݓ

∑ ௧ሻெܠ௝ሺ݌௝ݓ
௝ୀଵ

 (9)

 

where ࣆ௜ is the mean vector of ith Gaussian component in the UBM model, ࣆෝ௜ is the MAP 
adapted mean vector of the speaker model and r is the relevance factor. The same mixture 
weights, ݓ௜ and covariance matrices Σ௜ are used in both ߣୗ୔୏ and ߣ୙୆୑ (Reynolds et. al., 2000, 
Kinnunen and Li, 2011).  For more details about GMM and GMM-UBM methods readers are 
refered to Reynolds et. al (2000). 

In the recognition step, unknown feature vectors ܇ ൌ ሼܡଵ, ,ଶܡ … ,  ேሽ and claimed speakerܡ
and UBM models ߣୗ୔୏ and ߣ୙୆୑ are used to compute log-likelihood ratio score. 

Vector quantization (VQ) in turn, another simple but powerful classifier and has 
successfully been used in speaker recognition (Kinnunen et. al., 2008). In VQ, given 
background feature vectors ܆ ൌ ሼܠଵ, ,ଶܠ … ,  ሽ the aim is to find a set of codevectors known as்ܠ
codebook which is denoted by ۱୙୆୑ ൌ ሼ܋ଵ, ,ଶ܋ … , ܯ ெሽ, where܋ ≪ ܶ which minimizes a given 
objective function. Mean squared error (MSE) is usually used as objective function: 

MSEሺ܆, ۱ሻ ൌ
1
ܶ
෍ min

ଵஸ௠ஸெ
௧ܠ‖ െ ௠‖ଶ܋

்

௧ୀଵ

 (10)

where ‖ܠ௧ െ  ௠. Standard܋ ௧ andܠ ௠‖ଶ is the squared Euclidean distance between the vectors܋
K-means algorithm is used to train ܥ୙୆୑. After UBM model is trained, the speaker model ܥୗ୔୏  
(speaker codebook) is adapted from UBM model ܥ୙୆୑ using speaker training feature vectors 
܆ ൌ ሼܠଵ, ,ଶܠ … ,  ሽ via MAP adaptation (Hautamaki et. al. 2008, Kinnunen et. al., 2009, Hanilci்ܠ
and Ertas, 2011).  
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௠܋̂ ൌ ത௠ܠ௠ݓ ൅ ሺ1 െ ௠ (11)܋௠ሻݓ

where 

௠ݓ ൌ
|ܵ௠|

|ܵ௠| ൅ ݎ
 (12)

where |ܵ௠|	 is the number of training vectors assigned to the mth codebook by minimum 
distance criterion, ܠത௠ is the mean vector of these vectors and r is the relevance factor.  

Given a sequence of feature vectors, ܇ ൌ ሼܡଵ, ,ଶܡ … ,  ,ேሽ, and the claimed speaker modelܡ
, we compute the log-likelihood ratio and compare it against a threshold to make the decision. In 
the VQ model, the log-likelihood is related to the negative square error given in (10). Thus, the 
match score can be de fined as 
 
Λ ൌ െMSEሺܻ, ୗ୔୏ሻܥ െ ൫െMSEሺܻ, ୙୆୑ሻ൯ܥ ൌ MSEሺܻ, ୗ୔୏ሻܥ െ MSEሺܻ, ୙୆୑ሻ (13)ܥ

 
4.    EXPERIMENTAL SETUP 

4.1. Corpus, Classifier Design, Features and Performance Criteria 

Speaker recognition experiments are carried out on the NIST 2002 SRE corpus (NIST, 
2002) which consists of conversational telephone speech sampled at 8 kHz and transmitted over 
different cellular networks. It involves 330 target speakers (139 males and 191females) and 
39259 verification trials (2982 targets and 36277 impostors). For each target speaker, 
approximately two minutes of training data is available whereas duration of the test utterances 
varies between 15 seconds and 45 seconds. GMM-UBM and VQ-UBM are used as the 
classifier. Two gender-dependent background models with the model order 512 (number of 
Gaussians in GMM-UBM and number of code vectors in VQ-UBM) are trained using the NIST 
2001 SRE corpus (NIST, 2001). There are 144 male and 149 female speakers in the NIST 2001 
SRE database to train UBM data. We used background data duration varies from 5 minutes to 
110 minutes for each gender. The background data is selected from active speech portions (after 
non-speech frames are dropped).  Non-speech frames are dropped using adaptive energy based 
voice activity detection (VAD) (Kinnunen et. al., 2009). Energy VAD measures the frame 
energy by calculating standard deviation of the frame and compares it to the threshold. Standard 
deviation of a frame is calculated by 

 

௜ܧ ൌ 20 logቌ
1

ܰ െ 1
෍ሺݏ௜ሺ݆ሻ െ ௜ሻଶݏ̂
ேିଵ

௝ୀଵ

ቍ

ଵ/ଶ

 (14)

Where ݏ௜ሺ݆ሻ is the jth sample of the ith frame, ̂ݏ௜ is the sample mean of the frame and N is 
the number of samples in frame ݏ௜. The ith frame is detected as speech if ܧ௜ ൐ ൫max୨ E୨ െ30൯,  
௝ܧ ൐ െ55.  

Standard mel-frequency cepstral coefficients (MFCCs) are used as the features. Each 
frame is multiplied by a 30 msec Hamming window, shifted by 15 msec. From the windowed 
speech frames, magnitude spectrum using Fast Fourier Transform (FFT) is computed and 
spectrum is processed through a 27-channel triangular filterbank and logarithmic filterbank 
outputs are converted into MFCCs using the discrete cosine transform (DCT). After RASTA 
filtering the 12 MFCCs, their first and second order time derivatives (∆ and ∆∆) are appended. 
The last two steps are energy-based voice activity detector (VAD) followed by cepstral mean 
and variance normalization (CMVN).  
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As the performance criteria, we consider both equal error rate (EER) and minimum 
detection cost function (MinDCF). EER is the threshold value at which false alarm rate ( ௙ܲ௔) 
and miss rate ( ௠ܲ௜௦௦) are equal and MinDCF is the minimum value of a weighted cost function 
which is given by 0.1 ൈ ௠ܲ௜௦௦ ൅ 0.99 ൈ ௙ܲ௔. Detection error tradeoff (DET) curves are also 
presented to show full behavior of the proposed methods. 

 

4.2. Experimental Results 

Figure 3 shows the speaker recognition performance in terms of EER and MinDCF as a 
function of background data duration used to train UBM models for GMM-UBM and VQ-UBM 
methods. Interestingly, both methods yield quite high error rate when data duration is less than 
20 minutes and both GMM-UBM and VQ-UBM gives almost the same error rate. Another 
interesting observation that can be made from the figure is that, both methods have a knee-point 
at 20 minutes and when data duration is longer than 20 minutes both methods have less 
variations on the recognition performance when data duration is increasing. The performance of 
GMM-UBM and VQ-UBM are very close to each other independent from data duration in terms 
of EER. However, MinDCF is a decreasing function with respect to data duration. Different 
from the EER case, GMM-UBM outperforms VQ-UBM for all cases.  

 
 

 

 
Figure 3:  

EER and MinDCF values as a function of background data duration. 

Figure 4 shows the DET curves for a few selected data durations to see the full behaviour 
of each method. There is no large difference between GMM-UBM and VQ-UBM methods for 
different data durations. However, for short data durations (equal or less than 20 minutes) VQ-
UBM yields slightly smaller false alarm probabilities (top left corners of DET curves for Figure 
4.(a) and (b)). When data duration is longer than 20 minutes this observation does not hold. 
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5.   CONCLUSION 
 

In this paper, we analyzed the effect of data duration to train UBM for GMM-UBM and 
VQ-UBM classifiers on speaker verification performance. Experimental results with NIST 2002 
SRE corpus showed that small recognition accuracy was obtained when background data 
duration is less than 20 minutes for both GMM-UBM and VQ-UBM classifiers. However, we 
didn't observe so many variations on recognition rates for the values of background data 
duration longer than 20 minutes. In general, GMM-UBM and VQ-UBM classifiers showed 
similar performances and for both systems background data duration had similar effects on 
recognition accuracy. 

 

 

Figure 4:  
DET curves for different data durations 
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