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Abstract: In a recent paper, we have derived Cramér-Rao bounds for data and non-data-aided SNR estimation of 
noncoherent BFSK signals in slowly Rayleigh fading channels, and provided the corresponding true and approximate 
maximum-likelihood estimators for the data-aided and non-data-aided estimation, respectively. In this paper, the 
performances of the estimators are examined analytically in terms of means and variances. The results illustrate the 
efficiency of their performance. 
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Rayleigh Sönümlü Kanallarda Evre Uyumsuz BFSK İşaretlerin İşaret Gürültü  
Oranının En Büyük Olabilirlik Kestiricilerinin Başarımı Hakkında 

Özet: Yakın geçmişte yayınlanan bir makalemizde yavaş Rayleigh sönümlü kanallarda evre uyumsuz BFSK işaretle-
rinin veri destekli ve veri desteksiz işaret gürültü oranı kestirimine ilişkin Cramér-Rao sınırları çıkarılmış, ve bunlara 
karşılık gelen tam ve yaklaşık en büyük olabilirlik kestiricileri, sırasıyla, veri destekli ve veri desteksiz kestirim için 
elde edilmiştir. Bu makalede, kestiricilerin başarımı beklenti ve değişinti büyüklükleri yoluyla analitik olarak ince-
lenmiştir. Sonuçlar kestiricilerin başarımlarının verimliliğini göstermektedir. 

Anahtar Kelimeler: İşaret Gürültü Oranı Kestirimi, En Büyük Olabilirlik, Rayleigh Kanalları, Evre Uyumsuz BFSK. 

1. INTRODUCTION 

Diversity combining has long been recognised as a powerful technique for mitigating the destruc-
tive effects of channel fading, and can be implemented either coherently or noncoherently (Proakis, 1983). 
Noncoherent detection is normally desired when the transmission channel is such that reliable carrier re-
covery is difficult or impractical to obtain. It is well-known (Simon and Alouini, 2000) that the optimum 
receiver for the noncoherent communication employs square-law detection in each diversity channel, and 
applies weights to the output of each diversity channel determined from the average fading signal-to-noise 
ratio (SNR) estimated in practice from measurement on each channel before combining them. Since the 
combined system performance depends on the SNR estimates in each branch (Simon and Alouini, 2003), it 
is therefore of great interest to find its actual maximum likelihood estimators and assess their performance 
against the Cramér-Rao bound (CRB) (Kay, 1993), a well-known lower bound for the variance of any un-
biased estimator for a given observation data. 

In Dilaveroğlu and Ertaş (2005), we obtained three possible CRB expressions for the data-aided 
(DA) and the non-data-aided (NDA) SNR estimation of noncoherent binary frequency-shift-keying 
(NCBFSK) modulated signals with square-law detection, and provided the corresponding maximum likeli-
hood estimators (MLEs) for the DA and the NDA estimation. Due to the restrictions on the length of the 
manuscript, derivation and therefore the proof of the mean and variance of the MLEs have not been unfor-
tunately included. In this paper, we derive the mean and variance of the MLEs for the NDA and the DA 
estimation given in Dilaveroğlu and Ertaş (2005), and compare their performance against the correspond-
ing CRBs derived therein. 
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2. SYSTEM DEFINITIONS 

Assuming a flat slowly Rayleigh fading channel with a receiver using square-law detection for 
NCBFSK signalling (Simon and Alouini, 2000), three data sets (models) out of many are adopted in     
Dilaveroğlu and Ertaş (2005), from which the average SNR may be estimated. Data models are referred to 
as Data Model 1 (DM1), Data Model 2 (DM2), and Data Model 3 (DM3), which are obtained from appro-
priately selected stages of the square-law detector and can be written as: 

DM1: { }kk wv Re= , Kk ...,,2,1= , (1) 

DM2: [ ]Tkkk zuv
22

,= , Kk ...,,2,1= , (2) 

DM3: 
22

kkk zuv −= , Kk ...,,2,1= , (3) 

respectively, where [ ] k
j

kk
T

kkk neszuw k +== θαγ, , 0NEb=γ  is the average SNR in which bE  

is the transmitted bit energy and 0N  is the spectral density of the additive white Gaussian noise (AWGN), 

[ ]Tks 0,1=  or [ ]T1,0  with equal probability, assuming sufficient channel interleaving, kα  is a Rayleigh 

distributed fading amplitude with ( ){ } 12 =kE α , kθ  is the random phase uniformly distributed in ]2,0[ π , 

[ ]Tkskckskck njnnjnn ,2,2,1,1 , ++=  is the complex noise vector in which kcn ,1 , ksn ,1 , kcn ,2 , and ksn ,2  

are i.i.d. zero-mean Gaussian random variables with variance 21 . ks , kα , kθ , and kn  are all independ-

ent of each other. Also, the kv ’s for Kk ...,,2,1=  are assumed to be i.i.d. random vectors (of size 12×  

or 11×  depending on the data model). The average received SNR is ( ){ } γα ==
0

2

0 N

E
E

N

E b
k

b , and our 

interest is to find an unbiased estimator of γ , by using the observed data { }K
kkv 1=  for each data model 

above. We denote the CRB on the variance of any unbiased estimator of γ  by γCRB . 

3. CRAMÉR-RAO BOUNDS AND MAXIMUM LIKELIHOOD ESTIMATORS 

Given the thk  data sample [ ]Tkkk yxv ,=  in (1) and (2), and [ ]kk vv =  in (3), the likelihood 

functions of γ  for the kv  respectively for the data sets (1)-(3) in the case of NDA estimation are given as 

(Dilaveroğlu and Ertaş, 2005) 
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and ( ) ( )∑ +∞
=

−= 0, k
sakasζ  is the generalised Riemann’s zeta function. For the DA estimation, eliminat-

ing the dependency of the kv  on the ks  gives rise to a scalar [ ]kk vv =  for all the data models DM1-

DM3, and the likelihood functions are obtained as (Dilaveroğlu and Ertaş, 2005) 
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with the corresponding γCRB ’s given as 
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The MLE γ̂  of γ  is obtained from the maximisation of the applicable (NDA or DA) likelihood 

function ( )∏ =
K
k kvp1 ;γ  with respect to γ . It is unfortunately prohibited to find a closed-form expression 

for the γ̂  for the NDA estimation. However, an approximate MLE can be obtained in closed-form for a 
sufficiently large γ . For the DM1-DM3, the approximate MLEs are obtained as (Dilaveroğlu and Ertaş, 
2005) 
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for the NDA estimation. Fortunately, for the DA estimation, the true MLEs can be obtained as (Dilaver-
oğlu and Ertaş, 2005) 
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4. MEAN AND VARIANCE OF THE APPROXIMATE MAXIMUM LIKELIHOOD 
ESTIMATORS FOR THE NDA ESTIMATION 

In this section we derive the mean and variance of the approximate MLEs (16)-(18) for the NDA 
estimation of γ  for data models DM1-DM3, respectively. However, due to the complexity of the likeli-
hood functions and the MLEs for the data models, it is unfortunately prohibited to obtain the results in 
closed forms. We therefore present the results most conveniently in the form of plots. 

We begin with the data model DM1. Let us define an auxiliary random variable as 
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Since the [ ]Tkkk yxv ,= ’s are i.i.d., the kr ’s are also i.i.d. Thus, we get the mean and variance of the 

MLE 1,ˆ DMNDAγ  as 
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However, the above integrals need to be evaluated numerically. 

For the data model DM2, if we similarly define 
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are evaluated numerically. 

For the data model DM3, we first compute the mean and variance of 
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Then, the mean and variance of the random variable T  in (18) are calculated by 
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Now, if we assume that the probability density function (PDF) of T  is negligible outside a small interval 
about its mean, the mean and variance of the MLE 3,ˆ DMNDAγ  can be approximated as (Papoulis, 1991, p. 

112) 
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Figure 1: 

Mean of the approximate MLEs for the NDA estimation for the three data models. 
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We computed the mean and variance of the MLEs for SNR values taken between dB5−  and 

dB15  with increments of dB5.0 . The means, (22), (24) and (26), are shown in Figure 1 and the vari-
ances, (23), (25) and (27), together with the corresponding CRBs from Dilaveroğlu and Ertaş (2005), re-
peated here in (7)-(9), are shown in Figure 2. We observe from the figures that the estimators are practi-
cally unbiased and efficient, i.e., achieve the corresponding CRBs, for all SNR values greater than or equal 
to, say, dB3 . Note that a similar conclusion has also been drawn in Dilaveroğlu and Ertaş (2005) based 
on the simulations performed therein. Also, note that the abovementioned assumption on the PDF of the 
random variable T  for the data model DM3 becomes valid for dB3≥γ . This follows from the related 
analytical results presented in the figures here and the corresponding simulation results given in (Dilaver-
oğlu and Ertaş, 2005, Table 1). 

 
Figure 2: 

Variance of the approximate MLEs for the NDA estimation for the three data models. 

 

5. MEAN AND VARIANCE OF THE EXACT MAXIMUM LIKELIHOOD ESTIMATORS 
FOR THE DA ESTIMATION 

We next consider the DA estimation case. Fortunately, for this case we can get closed-form ex-
pressions for the mean and variance of the exact MLEs given in (19)-(21) for the data models DM1-DM3, 
respectively. We shall show that the MLEs are unbiased and efficient. 

For the data model DM1, since the kv ’s are i.i.d. random variables, we have 
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c.f. (13). Thus, the MLE 1,ˆ DMDAγ  is unbiased and attains the corresponding CRB regardless of the value 

of γ . 
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Similarly, for DM2 
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c.f. (14). Hence the MLE 2,ˆ DMDAγ  is also an unbiased and efficient estimator of γ  for all γ . 

For the data model DM3, we first calculate the mean and variance of the random variable T  in 
(21). To this end, let lA  for Kl ...,,1,0=  denote the event that l  out of the K  random variables 

Kvvv ,,, 21 Κ  are positive. Also, define 

( ) ( )
( ) ( ) .;,;

,;,;

0 3,
2

20 3,1

0 3,0

0

3,0

∫∫
∫∫

∞∞

∞

∞−

==

==

dxxpxMdxxxpM

dxxpMdxxpm

DMDADMDA

DMDADMDA

γγ

γγ
   

Then 

{ } { } { }

( )

( )
( )

,
2

1

1

1
1

...2
21

Pr

2

1
1

001

1
00

1

0
10

1
0

1
1

1
010

2
01

2
001

1
01

0

γ
γ

+
+=

=+=








 −
=








=









+−








−

+

++







+








=

=

−

−−
−

=

−−

=

−−

−−

=

∑∑

∑

K

KMmMKM

mM
l

K
KMmlM

l

K
M

MKM
K

K
mMMK

K

K

mMM
K

mM
K

AATETE

K

lKl
K

l

lKl
K

l

KK

KK

K

l
ll

   

{ } { } { }

( )

( )

( ) ( )( )[ ]

( )[ ]

( )

( )

( ) ( )( )
( ),1

1

2
1

1

1

1

211
1

...63
3

22
21

Pr

2
12

2
00

2
1

1
002

2
00

2

0

2
1

1
00

1

0
2

0
2

0
2

2
10

1
0

1
2

2
0

2
1

1
02

0
3

0
2
1

2
02

3
00

2
1

2
02

2
0

2
102

1
02

0

22

−+=

+−++=








 −
−+







 −
=

−







+








=

−+







+

−−+−







−

+

+++







+

+







+








=

=

−−

−−
−

=

−−
−

=

−−

=

−−

=

−−

−−

−

−−

=

∑∑

∑∑

∑

KKMKM

mMKKMmMKM

mM
l

K
KKMmM

l

K
KM

mMll
l

K
MmlM

l

K
M

MMKKMKM
K

K

mMMKKMMK
K

K

mMMMM
K

mMMM
K

mM
K

AATETE

KK

lKl
K

l

lKl
K

l

lKl
K

l

lKl
K

l

KK

KK

K

KK

K

l
ll

   



 

 78 

and, thus 
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Now, under the assumption that the PDF of T  is concentrated near its mean, the mean and variance of the 
MLE 3,ˆ DMDAγ  are related to those of the T  as 
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c.f. (15). So, 3,ˆ DMDAγ  is unbiased and attains the CRB under the abovementioned assumption. The fact 

that this assumption is valid for all practical values of the SNR follows from the simulation results given in 
(Dilaveroğlu and Ertaş, 2005, Table 2), where the SNR values were considered in the range from dB3−  

to dB15 . 

6. CONCLUSIONS 

The performances of the MLEs proposed in Dilaveroğlu and Ertaş (2005) for the data-aided and 
the non-data-aided estimation of the SNR for noncoherent binary frequency-shift-keying signals in 
Rayleigh fading channels have been investigated. Analytical results show that the proposed MLEs for the 
DA estimation are unbiased and efficient regardless of the value of SNR. However, the MLEs proposed for 
the NDA estimation are unbiased and efficient only for some moderate to large values of SNR, such as 3 
dB onwards. 
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